Growing a Smart Pointer

PATRICE ROY (PATRICER AT GMAIL.COM)
C++ USERS GROUP, MUNICH, JAN. 2021

Who am |?

Father of five (four girls, one boy), ages 26 to 7 (might explain some background noises)

Feeds and cleans up after a varying number of animals (might explain some background noises too)
o Look for Paws of Britannia with your favorite search engine

Used to write military flight simulator code, among other things
o CAE Electronics Ltd, IREQ

Full-time teacher since 1998
> College Lionel-Groulx, Université de Sherbrooke

o Works a lot with game programmers

Incidentally, WG21 and WG23 member (although I’'ve been really busy recently)
° Involved in SG14, among other study groups

o QOccasional WG21 secretary

And so on...

Overview

What do we mean by « Smart Pointer »?

What do we mean by « Responsibility »?
Key Niches for Smart Pointers

Filling a Niche: Growing a Smart Pointer
> Selecting a Responsibility Handling Mechanism

o Putting it all Together

Reflecting on what we did

What do we mean by « Smart Pointer »?

What do we mean by « Smart Pointer »?

Pointers, even raw pointers, are not bad per se
° In fact, they are often quite useful!

o Contrary to popular belief (or FUD...), pointers do not leak memory by themselves

What do we mean by « Smart Pointer »?

Pointers, even raw pointers, are not bad per se
° In fact, they are often quite useful!

o Contrary to popular belief (or FUD...), pointers do not leak memory by themselves

void f£() {

const char *p = "I love my 1nstructor";

cout << p << endl; // prints important message
} // p dies here. No leak

What do we mean by « Smart Pointer »?

Pointers, even raw pointers, are not bad per se
° In fact, they are often quite useful!

o Contrary to popular belief (or FUD...), pointers do not leak memory by themselves

v

©! template <class T, size t N>
volid g(const T (&arr) [N]) |
cout << arr[0];
for (auto p = next (begin(arr)); p != end(arr); ++p)

COUt << " | " << *p’.
} // p dies once the for loop concludes. No leak

What do we mean by « Smart Pointer »?

The main problem with pointers tends to be managing the lifetime of the pointee

What do we mean by « Smart Pointer »?

The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ...
X* £();
void g (X*
int main (
X *p =
g(p) 7

) ;

£(); // or auto p = f();

P

What do we mean by « Smart Pointer »?

The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ...
X* £();
void g (X*
int main (
X *p =
g(p) 7

) ;

£();

P

In how many ways can
we go wrong here?

What do we mean by « Smart Pointer »?

The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ... */ };
X* £();

Where does *p come from? Some C++
code? Some C code? Some code written in
another language? Something managed by

the underlying platform?

What do we mean by « Smart Pointer »?

The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ...
X* £();

vold g (X*);

int main ()

X *p £();

g(p); Will g (p) call delete on p?

delete p;

What do we mean by « Smart Pointer »?

The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ...
X* £();

vold g (X*);

int main ()

X *p =10 Will g (p) throw? If so, what

g(p); will happen to p’s pointee?
delete p;

What do we mean by « Smart Pointer »?

The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ...
X* £();
void g (X*
int main (
X *p =

) ;

£();

g(p); Should the caller of £ (),
delete p; main () in this case, even

be doing this?

What do we mean by « Smart Pointer »?

The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ...
X* £();
volid g (X*
int main (
X *p =
g(p) 7
delete p;

) ;

£();

Was the pointee allocated
through operator new?

What do we mean by « Smart Pointer »?

The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ...
X* £();
volid g (X*
int main (
X *p =
g(p) 7
delete p;

) ;

£();

Was the pointee allocated
through operator new[]?

What do we mean by « Smart Pointer »?

The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ...
X* £();
volid g (X*
int main (
X *p =
g(p) 7
delete p;

) ;

£();

Was the pointee allocated
through malloc ()?

What do we mean by « Smart Pointer »?

The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ...
X* £();
volid g (X*
int main (
X *p =
g(p) 7
delete p;

) ;

£();

...was the pointee allocated
through some other mechanism?

What do we mean by « Smart Pointer »?

The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ...
X* £();
vold g (X*
int main (
X *p =
g(p); _
delete p; ...was the pointee
dynamically allocated at all?

) ;

£();

What do we mean by « Smart Pointer »?

The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ... : :
X* £() ; ... 18 f£() written as:

void g (X*); £O o

*
: : X
int main (return new X;

X *p

(D) ;0r
dele;e p; ...was the pointee f() {

dynamically allocated at all? static X object;
return &object;

What do we mean by « Smart Pointer »?

The main problem with pointers tends to be managing the lifetime of the pointee

Bonus issue : what if the caller neglects to

X* £() A finalize the returned pointee?

return new X;

J With C++17, we can require that the
return value is used, with
[[nodiscard]], but not that
operator delete isappliedtoit..

What do we mean by « Smart Pointer »?

Using raw pointers on the boundaries of function interfaces is tricky, as the responsibility with
respect to the pointee are unclear

o The key benefit of smart pointers is that they encode the responsibility with respect to the pointee into
a type

What do we mean by « Smart Pointer »?

Using raw pointers on the boundaries of function interfaces is tricky, as the responsibility with
respect to the pointee are unclear

> The key benefit of smart pointers is that they encode the responsibility with respect to the pointee
into a type

It probably deserves to be
expressed in a boldface font

What do we mean by « Responsibility »?

24

What do we mean by « Responsibility »?

Responsibility here can also be expressed as defining the rules or manner of ownership

What do we mean by « Responsibility »?

Responsibility here can also be expressed as defining the rules or manner of ownership

In C++ terms, ownership for a smart pointer determines what happens with the pointee when
(or if) the object is:

o Copied

° Moved

> Destroyed

What do we mean by « Responsibility »?

Responsibility here can also be expressed as defining the rules or manner of ownership

In C++ terms, ownership for a smart pointer determines what happens with the pointee when
(or if) the object is:

o Copied

° Moved

> Destroyed

Since smart pointers are objects, the fact that they have well-defined responsibility over the
pointee can simplify significantly the code of objects handling pointees

What do we mean by « Responsibility »?

Compare:
o https://wandbox.org/permlink/2fV7sl3e20Zk9LEx

o https://wandbox.org/permlink/2vYrQfUri467X0S7

Simple, dynamically allocated arrays with fixed sizes
o Just the basics (special functions, size (), begin (), end (), some basic aliases)

Using a smart pointer...
° ...reduces the number of source code lines by 24%

° ...makes all explicit exception handling go away

https://wandbox.org/permlink/2fV7sI3e2oZk9LEx
https://wandbox.org/permlink/2vYrQfUri467X0S7

Key Niches for Smart Pointer

29

Key Niches for Smart Pointer

With C++20, the standard library offers the following smart pointers
° unique_ptr<T>

o shared_ptr<T>

o weak_ptr<T>

o atomic<shared_ptr<T>>

o atomic<weak_ptr<T>>

Key Niches for Smart Pointer

With C++20, the standard library offers the following smart pointers
° unique_ptr<T>
° There are variations such as unique ptr<T[]> and versions that allow custom deleters

shared_ptr<T>

o Likewise, thereisa shared ptr<T[]> variation since C++17

o

o

weak ptr<T>

° Collaborates with shared ptr<T> insome corner cases

o

atomic<shared_ptr<T>>

o

atomic<weak_ptr<T>>

o Useful for specialized, often lock-free applications

Key Niches for Smart Pointer

With C++20, the standard library offers the following smart pointers
° unique_ptr<T>

° shared_ptr<T> For most use cases, these
o weak_ ptr<T> two are the main standard
> atomic<shared_ptr<T>> smart pointers

o atomic<weak_ptr<T>>

Key Niches for Smart Pointer

With C++20, the standard library offers the following smart pointers
° unique_ptr<T>
o shared_ptr<T>
o weak_ptr<T>

In the majority of use cases, unique ptr<T>
is your friend; shared ptr<T> is necessary,

o mic<shar r<T>> . : : iali
atomic<shared_pt but more costly and its niche is more specialized

o atomic<weak_ptr<T>>

Key Niches for Smart Pointer

As a reminder:

> The key benefit of smart pointers is that they encode the responsibility with respect to the pointee
into a type

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared ptr<T> Shared ownership. Copying, assigning and
destroying all update a use count. When the last
owner is destroyed, it destroys the pointee

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared ptr<T> Shared ownership. Copying, assigning and
destroying all update a use count. When the last
owner is destroyed, it destroys the pointee

It’s a restricted set of niches...

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared ptr<T> Shared ownership. Copying, assigning and
destroying all update a use count. When the last
owner is destroyed, it destroys the pointee

What additional rows could be
interesting?

Key Niches for Smart Pointer

e [Niche

unique_ptr<T>

shared_ptr<T>

Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

Shared ownership. Copying, assigning and
destroying all update a use count. When the last
owner is destroyed, it destroys the pointee

No ownership. Behaves like a reference

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared ptr<T> Shared ownership. Copying, assigning and
destroying all update a use count. When the last
owner is destroyed, it destroys the pointee

T* No ownership. Behaves like a reference

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared ptr<T> Shared ownership. Copying, assigning and
destroying all update a use count. When the last
owner is destroyed, it destroys the pointee

T* No ownership. Behaves like a reference

Really. This is what raw pointers are
useful for on function interfaces

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared ptr<T> Shared ownership. Copying, assigning and
destroying all update a use count. When the last
owner is destroyed, it destroys the pointee

observer_ptr<T> No ownership. Behaves like a reference

This is another option: a « smart » pointer
that is really dumb (quoth Walter E. Brown:
« The dumbest smart pointer »)

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared ptr<T> Shared ownership. Copying, assigning and
destroying all update a use count. When the last
owner is destroyed, it destroys the pointee

observer_ptr<T> No ownership. Behaves like a reference

for an example

https://wandbox.org/permlink/wasX6P6GOrYLSpNZ

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and
destroying update a use count. When the last
owner is destroyed, it destroys the pointee

T* or observer_ptr<T> No ownership. Behaves like a reference

No ownership. Behaves like a reference. Offers
added semantics with respect to the pointee

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared ptr<T> Shared ownership. Copying, assigning and
destroying update a use count. When the last
owner is destroyed, it destroys the pointee

T* or observer_ptr<T> No ownership. Behaves like a reference

non_null_ptr<T> or other No ownership. Behaves like a reference. Offers
added semantics with respect to the pointee

This is quite useful, as it displaces validation
semantics from client code to the type

Key Niches for Smart P«
ch s % ey

unique_ptr<T> ' assert (p) ;
' // use p...

shared_ptr<T>

{

T* or observer_ptr<T>

non_null_ptr<T> or other

This is quite useful, as it displaces validation

semantics from client code to the type

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared ptr<T> Shared ownership. Copying, assigning and
destroying update a use count. When the last
owner is destroyed, it destroys the pointee

T* or observer_ptr<T> No ownership. Behaves like a reference

non_null_ptr<T> or other No ownership. Behaves like a reference. Offers
added semantics with respect to the pointee

an example

https://wandbox.org/permlink/rtn1KYSU2Cfyx9Tg

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and
destroying update a use count. When the last
owner is destroyed, it destroys the pointee

T* or observer_ptr<T> No ownership. Behaves like a reference

non_null_ptr<T> or other... No ownership. Behaves like a reference. Offers
added semantics with respect to the pointee

Exotic semantics

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared ptr<T> Shared ownership. Copying, assigning and
destroying update a use count. When the last
owner is destroyed, it destroys the pointee

T* or observer_ptr<T> No ownership. Behaves like a reference

non_null_ptr<T> or other... No ownership. Behaves like a reference. Offers
added semantics with respect to the pointee

remote_ptr<T> Exotic semantics

Idea : calling a function performs the required marshalling.
Non-trivial code (no time to do this today)...

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and
destroying update a use count. When the last
owner is destroyed, it destroys the pointee

T* or observer_ptr<T> No ownership. Behaves like a reference

non_null_ptr<T> or other... No ownership. Behaves like a reference. Offers
added semantics with respect to the pointee

remote_ptr<T> Exotic semantics

Single ownership. Duplicates the pointee when
copied. Destroys the pointee when it is destroyed

Key Niches for Smart Pointer

e [Niche

unique_ptr<T>

shared_ptr<T>

T* or observer_ptr<T>

non_null_ptr<T> or other...

remote_ptr<T>

dup_ptr<T>

Let’s do this together :)

Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

Shared ownership. Copying, assigning and
destroying update a use count. When the last
owner is destroyed, it destroys the pointee

No ownership. Behaves like a reference

No ownership. Behaves like a reference. Offers
added semantics with respect to the pointee

Exotic semantics

Single ownership. Duplicates the pointee when
copied. Destroys the pointee when it is destroyed

Smart Pointer

ing a

. Growl

Telgl=

Filling a N

51

Filling a Niche: Growing a Smart Pointer

What are the use-cases fora dup ptr<T>?

o We want pointer that takes ownership of the pointee, and duplicates the pointee when the pointer is
duplicated

° Inthis, unique ptr<T> - being uncopyable —does not meet our needs

> Neither does shared ptr<T>, where copying the pointer shares the pointee

Filling a Niche: Growing a Smart Pointer

What are the use-cases fora dup ptr<T>?

o We want pointer that takes ownership of the pointee, and duplicates the pointee when the pointer is
duplicated

° Inthis, unique ptr<T> - being uncopyable —does not meet our needs

> Neither does shared ptr<T>, where copying the pointer shares the pointee

o We seek similar-to-value-semantics for objects that are copyable but that we want to allocate
dynamically

° There are objects like this

° For example, any object with a private destructor can only be allocated dynamically by client code

Filling a Niche: Growing a Smart Pointer

Let’s do it one step at a time...

Filling a Niche: Growing a Smart Pointer

template <class T>

class dup ptr {
};

Filling a Niche: Growing a Smart Pointer

template <class T>

class dup ptr {
};

Well, that’s a start :)

Filling a Niche: Growing a Smart Pointer

template <class T>

class dup ptr {

T *p;
|

Filling a Niche: Growing a Smart Pointer

template <class T>

class dup ptr {

T *p; So,a dup ptr<T> willhosta T*.It’s reasonable.
}; If we can keep it that way, we’ll share a cool side of
unique ptr<T> (without custom deleter) in that
sizeof (dup ptr<T>)==sizeof (T*),whichisan
enviable property (no size overhead when compared to
a raw pointer)

Filling a Niche: Growing a Smart Pointer

template <class T>

A reasonable example of client code would be:

class dup ptr {
int main() {
static assert (
}; sizeof (dup ptr<int>{})==sizeof (int¥*)
) ;
dup ptr<int> p;
assert (p.empty()); // or assert(!p)

T *p;

Filling a Niche: Growing a Smart Pointer

template <class T>

class dup ptr {
T *p;
public:
constexpr dup ptr() noexcept : p{} {
}
constexpr bool empty () const noexcept {
return !'p; // or p == nullptr;
}

constexpr operator bool () const noexcept { return 'empty (), }

Filling a Niche: Growing a Smart Pointer

template <class T>

class dup ptr { L e)
. - static assert (
T *p; sizeof (dup ptr<int>{})==sizeof (int*)
public:) ;

dup ptr<int> p;
assert (p.empty()) ;

constexpr dup ptr() noexcept
}

constexpr bool empty () const

return !p;

}

constexpr operator bool () const noexcept { return 'empty (), }

b

Filling a Niche: Growing a Smart Pointer

template <class T>

class dup ptr {
T *p{}; // or T p = nullptr;
public:
dup ptr() = default;
constexpr bool empty () const noexcept {
return !'p;
}

constexpr operator bool () const noexcept { return l'empty (), }

Filling a Niche: Growing a Smart Pointer

template <class T>

int main() {
class dup_ptr { static assert (
T *p{}; sizeof (dup ptr<int>{})==sizeof (int*)
)2
public:

dup ptr<int> p;
dup ptr() = default; assert (p.empty());

constexpr bool empty() co

return !'p;

}

constexpr operator bool () const noexcept { return l'empty (), }

b

Filling a Niche: Growing a Smart Pointer

template <class T>

class dup ptr {

T *pi{};
public:
dup ptr() = default;
constexpr bool empty () const noexcept { return !p; }
constexpr operator bool () const noexcept { return !empty(); }

dup ptr (T *p) noexcept : p{ p } {
}
~dup ptr() { delete p; }

Filling a Niche: Growing a Smart Pointer

template <class T>

class dup ptr A delete p; isano-opif p is nullptr
T *p{}; -
, We could specialize dup ptr<T> for the
public: "

case T[] anddo delete[] p; here, butl
dup_ptr() = default; will not have the time to do this today (try it!)

constexpr bool empty() con

constexpr operator bool (¥ const noexcept { return

lempty (); }
dup ptr (T *p) noexcept : p{ p } {

}

~dup ptr() { delete p; }

b

Filling a Niche: Growing a Smart Pointer

template <class T>

class dup ptr {
T *p{};
public:
/] ...
T& operator* () noexcept { return *p; }
const T& operator* () const noexcept { return *p; }
T* operator->() noexcept { return p; }

const T* operator->() const noexcept { return p; }

Filling a Niche: Growing a Smart Pointer

template <class T>

operator* () letsone dereferencea dup ptr<T> asone
class dup_ptr ({ would a T*. Note the noexcept specification :if p is
T *p{}; nullptr, then dereferencing it is undefined behavior, so
. noexcept remains reasonable
public:
//

T& operator* () noexcept { return *p; }
const T& operator* () const noexcept { return *p; }

T* operator->() noexcept { return p; }

const T* operator->() const noexcept { return p; }

Filling a Niche: Growing a Smart Pointer

template <class T>

class dup ptr {

T *p{};
public:
/] ..
T& operator* () noexcept { return *p; }
const T& operator* () const noexcept { return *p; }

T* operator->() noexcept { return p; }

const T* operator->() const noexcept { return p; }

Filling a Niche: Growing a Smart Pointer

template <class T>

class dup ptr { operator-> () isa bit of a magical

T *p{}; bgast :.whe.n invoked implicitly on an

’ object, it re-invokes operator-> ()

public: on the returned value, until the entity
/) returned is a raw pointer

T& operator* () noexcept { return *p;
const T& operator* () const noexcept

T* operator->() noexcept { return p; }

const T* operator->() const noexcept { return p; }

Filling a Niche: Growing a Smart Pointer

template <class T>

We already have a usable, oversimplified pointer wrapper:

class dup ptr {

T *pi};
public:
// ...default ctor, ctor accepting T*...
// ...destructor, empty (), operator bool...
// ...operator* and operator-> both const and non-const...

s

https://wandbox.org/permlink/Y8ORd1Qr8An5IpaL

Selecting a Responsibility Handling Mechanism

71

Selecting a Responsibility Handling
Mechanism

Now, for the duplication semantics we want to implement...

Selecting a Responsibility Handling
Mechanism

Now, for the duplication semantics we want to implement...

One interesting problem is that duplication of the pointee can be of (at least) two flavors:

> Copying
o Usually applies to objects used directly

o Often non-polymorphic,
° Could oftenbe final

Selecting a Responsibility Handling
Mechanism

Now, for the duplication semantics we want to implement...

One interesting problem is that duplication of the pointee can be of (at least) two flavors:

> Copying
o Usually applies to objects used directly
o Often non-polymorphic,
° Could oftenbe final

> Cloning
> Usually applies to polymorphic objects
° Handled indirectly

o Typically conceived for extension

Selecting a Responsibility Handling
Mechanism

Now, for the duplication semantics we want to implement...

One interesting problem is that duplication of the pointee can be of (at least) two flavors:
> Copying
> Cloning

C++ has a standard way to duplicate objects through copying: the copy constructor

Selecting a Responsibility Handling
Mechanism

Now, for the duplication semantics we want to implement...

One interesting problem is that duplication of the pointee can be of (at least) two flavors:

> Copying
> Cloning

C++ has a standard way to duplicate objects through copying: the copy constructor

C++ has... many ways to implement cloning
> Note that the situation is not much better in many other popular languages

Selecting a Responsibility Handling
Mechanism

struct Int { Int modify locally(Int &x) ({
int n = 0; Int backup = x; // copy construction
Int() = default; x.n++; // leaves backup intact
Int(int n) : n{ n } { cout << x.n;
} return backup;
I }
int main() {

Int x; // x.n ==
x = modify locally(x); // displays 1
cout << x.n; // displays 0

Selecting a Responsibility Handling
Mechanism

struct Int { Int modify locally(Int &x) ({
int n = 0; Int backup = x; // copy construction
Int() = default; x.n++; // leaves backup intact
Int(int n) : n{ n } { cout << x.n;
} return backup;

b }

int main() {

Sign that Int is nicely copy-
constructible: ithas no virtual

Int x; // x.n ==

member functions (deriving publicly x = modify locally(x); // displays 1

from Int would be... questionable) cout << x.n; // displays 0

Selecting a Responsibility Handling

Mechanism

class Image {
//
public:
void modify () ;
virtual void display() const = 0;
virtual ~Image() = default;
I
class Png : public Image {
//

void display () const override;

b

Image* modify locally(Image *x) {
// illegal! Image is abstract
auto backup = new Image{ *x };
x->modify () ;
x->display () ;
return backup;

}

int main() {

Image *p = new Png;
p = modify locally(p)
p->display () ;

Selecting a Responsibility Handling
Mechanism

class Image {

//
public:

Image* modify locally(Image *x) {
// illegal! Image is abstract
auto backup = new Image{ *x };

void modify () ; x->modify () ;

virtual void display() const = 0; x->display () ;

Expression new Image

return backup; is illegal since Image is
} abstract

virtual ~Image() = default;

I
class Png : public Image {
//

void display () con

int main () {
Image *p = new Png;
p = modify locally(p);

bi , p->display () ;
Abstract (pure virtual)

member function...

Selecting a Responsibility Handling

Mechanism

class Image {
//
public:
void modify () ;
virtual void display() const {}
virtual ~Image() = default;
I
class Png : public Image {
//

void display () const override;

b

Image* modify locally(Image *x) {
// legal, but incorrect
auto backup = new Image{ *x };
x=>modify () ;
x->display () ;
return backup;
}
int main() {
Image *p = new Png;
p = modify locally(p);

p->display () ;

Selecting a Responsibility Handling
Mechanism

class Image {
/... // legal, but incorrect

Image* modify locally(Image *x) {

auto backup = new Image{ *x };

public:
void modify () ; x->modify () ;
virtual void display() const {} x=>display () ; Thbislegalas Tmage e
virtual ~Image () = default; return backup; abstract, but we have incing:
} we only copy the Image

} s

class Png : publig part of the object, losing all

that is specificto Png

int main () {

* = .
[Not abstract anymore... but tmage “p = new Png;

MR A it's not helpful (abstract was
¥ better in this case) p->display () ;

p = modify locally(p);

Selecting a Responsibility Handling
Mechanism

class Image {
/... // legal, but incorrect

Image* modify locally(Image *x) {

public: auto backup = new Image{ *x };

void modify () ; x=>modify () ;

virtual void display() const {} x->display () ; : :
e s 0 - default . . The idea here is that only *x
V1irtua ~1lmage = erau ; return ackupy .
knows what *x is. We need
bi) subjective duplication... Cloning!
class Png : public Image ({ int main() {
/] .. Image *p = new Png;
void display () const override; p = modify locally(p);

v p->display ()

Selecting a Responsibility Handling
Mechanism

Cloning is subjective duplication. Typically, this involves:
o Avirtual clone () member function that duplicates the most derived object

° A protected copy constructor that performs the duplication

° We want protected as client code cannot usually determine if it’s safe to call

There are other ways to achieve this, but this will suffice for our discussion

Selecting a Responsibility Handling
Mechanism

class Image { Image* modify locally(Image *x) {
protected: auto backup = x->clone(); // Ok
Image (const Imageé&) = default; x->modify () ;
public: x->display () ;
virtual Image *clone() const = 0; return backup;
virtual ~Image () = default; // etc. }
b int main() {
class Png : public Image ({ Image *p = new Png;
Png* clone() const override p = modify locally(p);
{ return new Png{ *this }; } p->display () ;
protected: }

Png (const Pngg&) ;

b

Selecting a Responsibility Handling

Mechanism

class Image {
protected:

Image (const Imageé&) = default;
public:

virtual Image *clone() const = 0;

virtual ~Image () = default; // etc.

}i
class Png : public Image ({
Png* clone() const override
{ return new Png{ *this }; }
protected:

Png (const Pngg&) ;

b

Image* modify locally(Image *x) {

auto backup = x->clone();
x->modify () ;
x->display () ;
return backup;
}
int main() {
Image *p = new Png;
p = modify locally(p);

p->display();

// Ok

This compiles and works...

Selecting a Responsibility Handling
Mechanism

class Image { Image* modify locally(Image *x) {
protected: auto backup = x->clone(); // Ok
Image (const Imageé&) = default; x=>modify () ;
public: x->display () ;
virtual Image *clone() const = 0; return backup;
virtual ~Image() = default; // etc. } This compiles and works...
)i int main() { and leaks (do you see it?).
class Png : public Image { Image *p = new Png; Our simple smart pointer
Png* clone() const override p = modify locally(p); m'ght V|S|b|y have its use...
{ return new Png{ *this }; } p->display () ;
protected: }

Png (const Pngg&) ;

b

Selecting a Responsibility Handling
Mechanism

What’s the problem space?
° Some objects can usually be duplicated through copy construction

° Some objects can usually be duplicated through cloning

o There might be more exotic cases that have escaped us... so we need an escape hatch

Selecting a Responsibility Handling
Mechanism

What’s the problem space?
° Some objects can usually be duplicated through copy construction

° Some objects can usually be duplicated through cloning
o There might be more exotic cases that have escaped us... so we need an escape hatch

There is no such thing as a std::clonable interface
> We can make suppositions, but we’ll need to keep our options open

Selecting a Responsibility Handling
Mechanism

Basic idea: let’s design duplicating function objects
> To keep the architecture efficient, let’s suppose them to be stateless

° For fun, you can tweak our dup ptr to accept stateful versions, but then you will need to store them
and will lose the sizeof (dup ptr<T>)==sizeof (T*) property

Selecting a Responsibility Handling
Mechanism

struct Copier {

template <class T> T* operator () (const T *p) const {

return new T{ *p };

Y
struct Cloner {

template <class T> T* operator () (const T *p) const {

return p->clone () ;

Y

Selecting a Responsibility Handling
Mechanism

struct Copier {
template <class T> T* operator () (const T *p) const {

return new T{ *p };

i
struct Cloner {
template <class T> T* operator () (const T *p) const {

return p->clone();

We will cover the basic cases we know of implicitly,
using these two duplication mechanisms

Selecting a Responsibility Handling
Mechanism

struct Copier {
template <class T> T* operator () (const T *p) const {

return new T{ *p };

i
struct Cloner {
template <class T> T* operator () (const T *p) const {

return p->clone();

The idea is that one can add more duplicating
object types as long as one respects the interface

Selecting a Responsibility Handling
Mechanism

struct Copier {
template <class T> T* operator () (const T *p) const {

return new T{ *p };

i
struct Cloner {
template <class T> T* operator () (const T *p) const {

return p->clone();

To keep things simple, we will consider
p!=nullptr to be a precondition of these
duplication mechanisms

Selecting a Responsibility Handling
Mechanism

Let’s pick an appropriate-by-default duplicating function object
° ... but let’s make sure client code can pick one if it « knows better » than we do

Selecting a Responsibility Handling
Mechanism

template <class T, class Dup = ...>

class dup ptr ({
T *pil};
public:
// ... use a Dup object whenever we want to duplicate *p

Y

Selecting a Responsibility Handling
Mechanism

template <class T, class Dup = ...>

class dup ptr {

T *p{}; Type Dup would be what is
public: often called a Policy class
// ... use a Dup object whenever we want to duplicate *p

s

Selecting a Responsibility Handling
Mechanism

How do we pick the right type for Dup?

° One option is to say « Suppose a clonable interface of our design; if T inherits from clonable,
then we clone, otherwise we copy »

Selecting a Responsibility Handling
Mechanism

How do we pick the right type for Dup?

° One option is to say « Suppose a clonable interface of our design; if T inherits from clonable,
then we clone, otherwise we copy »

// hypothetical « clonable » interface
struct clonable {

virtual clonable *clone () const = 0;

virtual ~clonable () = default;
protected:

clonable () = default;

clonable (const clonable&) = default;

b g

Selecting a Responsibility Handling
Mechanism

#include <type traits>

template <class T, class Dup = std::conditional t<
std: :is base of v<clonable, T>, Cloner, Copier
>>
class dup ptr {
T *pl};

public:

// ... use a Dup object whenever we want to duplicate *p

Y

Selecting a Responsibility Handling
Mechanism

#include <type traits>
template <class T, class Dup = std::conditional t<
std: :is base of v<clonable, T>, Cloner, Copier

>>

conditional t<cond, T, F> isequivalent to type

class dup ptr { - : -
- T if cond is true, and equivalent to type F if

T *p{}; cond is false.It'sacompile-time « 1f » fortypes

public:
// ... use a Dup object whenever we want to duplicate *p

s

Selecting a Responsibility Handling
Mechanism

) // easy to roll out your own:
‘template <bool, class, class> struct conditional ;
template <class T, class F>
struct conditional <true, T, F> {
using type = T;
}i
template <class T, class F>
struct conditional <false, T,
using type = F;
}i
template <bool cond, class T, class F>
using conditional t = typename conditional <cond,T,F>::type;

102

Selecting a Responsibility Handling
Mechanism

#include <type traits>

template <class T, class Dup = std::conditional t<

std: :is base of v<clonable, T>, Cloner, Copier

>>
What we are doing here is picking a default duplication
class dup ptr { strategy for T based on the properties of T
* .
T rpils If this default strategy is inappropriate, client code can
public: explicitly use one that suits its needs
//

use a Dup object whenever we want to duplicate *p

s

Selecting a Responsibility Handling
Mechanism

How do we pick the right type for Dup?

° One option is to say « Suppose a clonable interface of our design; if T inherits from clonable,
then we clone, otherwise we copy »

o This works but is un-idiomatic for C++

> Imposing a specific interface to types is intrusive coupling. Some languages encourage this, but not us

Selecting a Responsibility Handling
Mechanism

How do we pick the right type for Dup?

° One option is to say « Suppose a clonable interface of our design; if T inherits from clonable,
then we clone, otherwise we copy »

o This works but is un-idiomatic for C++

> Imposing a specific interface to types is intrusive coupling. Some languages encourage this, but not us

° Another optionistosay « if T hasa const member function named clone, then we clone,
otherwise we copy »

Selecting a Responsibility Handling
Mechanism

#include <type traits>

template <class, class = void> struct has_clone : std::false_ type { };
template <class T>
struct has_clone <T, std::void t< decltype(std::declval<const T*>()->clone()) >>
std: :true_ type {
}i
template <class T> constexpr bool has clone v = has_clone<T>::value;
template <class T, class Dup = std::conditional_t<has_clone v<T>, Cloner, Copier>>
class dup ptr {
T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

Selecting a Responsibility Handling
Mechanism

#include <type_ traits>
template <class, class = void> struct has_clone : std::false_type { };
template <class T>
struct has_clone <T, std::void t< decltype(std::declval<const T*>()->clone()) >>
: std::true_type ({
}i

template <class T> constexpr bool has clo

void t wasinvented by Walter E. Brown. It’s a brilliant
trick that lets us detect the validity of expressions at compile

template <class T, class Dup = std::condi
class dup ptr { . .
N time and make choices based on the result
*p ,-

public:

// ... use a Dup object whenever we

https://en.cppreference.com/w/cpp/types/void_t

Selecting a Responsibility Handling
Mechanism

#include <type_ traits>

template <class, class = void> struct has_clone : std::false_type { };
template <class T>
struct has_clone <T, std::void t< decltype(std::declval<const T*>()->clone()) >>
: std::true_type ({
}i

template <class

declval<T> () isan hypothetical (no joke!) function that lets one
reason at compile-time as if we had a T, regardless of how that T
would have been constructed

template <class
class dup ptr
T *p{};
public:
The whole « implementation » is:

// ... use

template <class T> T&& declval();

Selecting a Responsibility Handling
Mechanism

#include <type_ traits>
template <class, class = void> struct has_clone : std::false_type { };
template <class T>
struct has_clone <T, std::void t< decltype(std::declval<const T*>()->clone()) >>
: std::true_type ({

};

template <class T> constexpr bool has clone_v

template <class T, class Dup = st

class dup ptr { Here, concretely, we are validating that it would be possible

tocalla clone () member functionona const T*

T *pi{};

public:

// ... use a Dup object whenever we want to duplicate *p

Selecting a Responsibility Handling
Mechanism

#include <type_ traits>

template <class, class = void> struct has_clone : std::false_type { };
template <class T>
struct has_clone <T, std::void t< decltype(std::declval<const T*>()->clone()) >>
: std::true_type ({
}i
template <class T> constexpr bool has _clone_v = has_clone<T>::value;
template <class T, class Dup = std::conditional_t<has_clone v<T>, Cloner, Copier>>
class dup ptr {
T *p{};

public:

Thus, instead of imposing a common base class to all

// ... use a Dup object whenever we w

clonable types, we are looking for a member function with a
specific name and signature

Selecting a Responsibility Handling
Mechanism

How do we pick the right type for Dup?

° One option is to say « Suppose a clonable interface of our design; if T inherits from clonable,
then we clone, otherwise we copy »

> This works but is un-idiomatic for C++
> Imposing a specific interface to types is intrusive coupling. Some languages encourage this, but not us

° Another optionistosay « if T hasa const member function named clone, then we clone,
otherwise we copy »

> If we have a C++20 compiler, we can simply definea clonable concept

Selecting a Responsibility Handling
Mechanism

#include <concepts>

template <class T>
concept clonable = requires(const T *p) ({
{ p->clone() } -> std::convertible to<T*>;
};
template <class T, class Dup = std::conditional t<clonable<T>, Cloner, Copier>>
class dup ptr {
T *p{};
public:

// ... use a Dup object whenever we want to duplicate *p

b

Selecting a Responsibility Handling
Mechanism

#include <concepts>

template <class T> Here, we are stating T is clonable
if, givena const T *,we can invoke

t cl ble = 1 t T * :
concept clonable = requires(cons P) | clone () onitand get as a result

{ p->clone() } -> std::convertible to<T*>; something convertible to T*

};

template <class T, class Dup = std::conditional t<clonable<T>, Cloner, Copier>>

class dup ptr {
T *p{};
public:

// ... use a Dup object whenever we want to duplicate *p

b

Selecting a Responsibility Handling
Mechanism

#include <concepts>
template <class T>
concept clonable = requires(const T *p) {
{ p->clone() } -> std::convertible to<T*>;
i
template <class T> requires clonable<T> class dup ptr {
// ... Clone whenever we want to duplicate *p
I
template <class T> requires !clonable<T> class dup ptr {

// ... Copy whenever we want to duplicate *p

b

Selecting a Responsibility Handling
Mechanism

#include <concepts>

We could to it this way if we were
convinced there would never be other

template <class T>

concept clonable = requires(const T *p) ({ options. In our case, keeping a client-

{ p—>clone() } -> std::convertible to<T*>; approved escape hatch is probably safer

};
template <class T> requires clonable<T> class dup ptr ({
// ... Clone whenever we want to duplicate *p
I
template <class T> requires !clonable<T> class dup ptr ({

// ... Copy whenever we want to duplicate *p

b

Selecting a Responsibility Handling
Mechanism

How do we pick the right type for Dup?

° One option is to say « Suppose a clonable interface of our design; if T inherits from clonable,
then we clone, otherwise we copy »
o This works but is un-idiomatic for C++
> Imposing a specific interface to types is intrusive coupling. Some languages encourage this, but not us

° Another optionistosay « if T hasa const member function named clone, then we clone,
otherwise we copy »

> If we have a C++20 compiler, we can simply definea clonable concept

What if client code has more exotic duplication mechanisms?
> Then, client code will supply its own Dup policy instead of relying on our defaults

Selecting a Responsibility Handling
Mechanism

template <class T, class Dup = ...> template <class T, class D>
class dup ptr { void f (dup ptr<T, D> p) { /* use *p */ }
T *p{}; int main () {
/) .. struct exo dup {
}: Exo* operator () (const Exo *p) const {
class Exo { // exotic :) return p->duplicate();
// private }
Exo (const Exo&) ; b
public: dup ptr<Exo, exo dup>
Exo () = default; p{ new Exo };

Exo* duplicate() const; f(p);
}s }

Selecting a Responsibility Handling
Mechanism

template <class T, class Dup = ...> template <class T, class D>
class dup ptr { void f (dup ptr<T, D> p) { /* use *p */ }
T *p{}; int main () {
/] ... struct exo dup {
}; Exo* operator () (const Exo *p) const {
class Exo { // exotic :) return p->duplicate() ;
// private }
Exo (const Exo0&); };
public: dup ptr<Exo, exo_dup>
Exo () = default; p{ new Exo };

Exo* duplicate() const; f(p)
I }

Selecting a Responsibility Handling
Mechanism

template <class T, class Dup = ...> template <class T, class D>
class dup ptr { void f (dup ptr<T, D> p) { /* use *p */ }
T *p{}; auto duplicator() {
/... return [] (auto p) {
}; return p->duplicate();
class Exo { // exotic :) }s;
// private }
Exo (const Ex0&) ; int main() A
public: dup ptr<Exo, decltype (duplicator())>
Exo () = default; p{ new Exo };

Exo* duplicate() const; f(p)
I }

Putting it all Together

120

Putting it all Together

A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
o Default constructor

o Copy constructor
o Move constructor

o

Copy assignment

o

Move assignment

o

Destructor

Putting it all Together

A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
o Default constructor

o

Copy constructor
° Move constructor

o

Copy assignment

o

Move assignment

o

Destructor

Putting it all Together

A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
o Default constructor

o

Copy constructor

° Move constructor We will look at the others too, but
Copy assignment duplication of the pointee will occur in
Move assignment copying functions

Destructor

o

o

o

Putting it all Together

A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
o Default constructor

o

Copy constructor

Some of these functions will use the copy-and-swap

> Move constructor idiom for assighment. We will only define the swap ()
o Copy assignment member function between two dup ptr<T, D>
> Move assignment with the same D type:

o

Destructor
vold swap (dup ptr &other) {

using std::swap;
swap (p, other.p);

Putting it all Together

A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
o Default constructor

o

Copy constructor
> Move constructor These two have been

covered previously

o

Copy assignment

o

Move assignment

o

Destructor

Putting it all Together

A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
o Default constructor

o Copy constructor template <class T, class Dup
> Move constructor class dup ptr ({
> Copy assignment T *pi};

public:
dup ptr() = default;

o

Move assignment

o

Destructor ~dup ptr()

delete p;

//
b o

Putting it all Together

A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
o Default constructor

o

Copy constructor

Move operations can be implemented simply
between two dup ptr<T,D> instances if we
assume D to be stateless (our situation)

o Move constructor

o

Copy assignment

o

Move assignment

o

Destructor If we decide that the D object needs to be stored,
then we need to reflect on whether it should be
movable, and what it should mean in that case

Putting it all Together

A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
o Default constructor

o Copy constructor //

° Move constructor dup ptr (dup ptr &&other)

o Copy assignment . p{ std?:exchange(other.p, nullptr) } {
> Move assignment J

dup ptré& operator=(dup ptr &&other) {
dup ptr{ std::move (other) }.swap(*this);
return *this;

o

Destructor

Putting it all Together

A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
o Default constructor

o

Copy constructor

> Move constructor The copy operations will duplicate the pointee
Copy assignment according to the duplication policy associated with
the type (the D in dup ptr<T,D>).

o

o

Move assignment

o

Destructor : : :
We will not try do duplicate a null pointer, thus

respecting the duplication policies’ precondition

Putting it all Together

A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
o Default constructor

o Copy constructor //

> Move constructor dup ptr (const dup ptr &other)

o Copy assignment _ p{ other.empgy() ? nullptr : Dup{} (other.p) } {
° Move assignment)

dup ptré& operator=(const dup ptr &other) {
dup ptr{ other }.swap(*this);
return *this;

o

Destructor

Putting it all Together

A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
o Default constructor

o Copy constructor
o Move constructor

o

Copy assignment

o

Move assignment

o

Destructor

Full source code is available on https://wandbox.org/permlink/zuXLKc8tUKpdKaYu

https://wandbox.org/permlink/zuXLKc8tUKpdKaYu

Putting it all Together

A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
o Default constructor

Copy constructor There’s a lot more we could do with time:
> Move constructor specialize for the T[] case, add
Copy assignment relational operators, implement covariant
constructors and assignment, etc.

o

o

o

Move assignment

o

Destructor

Full source code is available on https://wandbox.org/permlink/zuXLKc8tUKpdKaYu

https://wandbox.org/permlink/zuXLKc8tUKpdKaYu

Reflecting on what we did

133

Reflecting on what we did

In C++, we don’t need to use pointers all that much, but when we do...

Raw pointers are fine and useful sometimes

However, their responsibility (if any) towards the pointee is often unclear

o |deally, either encapsulate them in « handle types » such as std::vector<T> or std::string,
or use them as non-owning observers of their pointee

The key benefit of smart pointers is that they encode the responsibility with respect to the
pointee into a type
° Their purpose is clearer

Reflecting on what we did

Standard C++ smart pointers are small in number but very good at what they do
° std::unique ptr isa beautiful idea

o Simplifies code and solves many problems at little-to-no cost depending on the use-case

> std::shared ptr hasa more narrow niche, but occupies it well

o It’s tricky to write, so prefer using standard, well-tested ones to rolling out your own

Reflecting on what we did

There are niches not (yet) covered by standard smart pointers
> We covered one with dup ptr

o We wrote code to have fun, obviously, but we had a use-case in mind

Just because a niche is left uncovered does not mean we should standardize a solution for it
o Sometimes, the niche is too narrow

o At other times, the solutions we know are not of std: :-level quality

> | would not dare suggesting a strategy that introduces a mandatory dependency on a std::clonable interface!

Reflecting on what we did

Our dup ptr<T,D> had interesting properties:
o We implicitly supplied a D type for the most common cases
o We allowed client code to supply its own D type for atypical cases

> Provided D remains stateless and we do not need to store it, we can provide a dup ptr<T> which
incurs no size overhead when compared with T*

Reflecting on what we did

Deducinga D policy class for dup ptr<T, D> can be done in various ways
° Imposing an intrusive type relationship

o if T derivesfrom clonable..

o Detecting the validity of relied-upon expressions

o iflcancall clone () froman hypothetical const T*..

> Detecting conformity to a concept

o if T satisfies clonable...

° efc.

Reflecting on what we did

| had fun, hope you had fun too!

Questions?

140

