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Who am I?
Father of five (four girls, one boy), ages 26 to 7 (might explain some background noises)

Feeds and cleans up after a varying number of animals (might explain some background noises too)
◦ Look for Paws of Britannia with your favorite search engine

Used to write military flight simulator code, among other things
◦ CAE Electronics Ltd, IREQ

Full-time teacher since 1998
◦ Collège Lionel-Groulx, Université de Sherbrooke
◦ Works a lot with game programmers

Incidentally, WG21 and WG23 member (although I’ve been really busy recently)
◦ Involved in SG14, among other study groups
◦ Occasional WG21 secretary

And so on…
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Overview
What do we mean by « Smart Pointer »?

What do we mean by « Responsibility »?

Key Niches for Smart Pointers

Filling a Niche: Growing a Smart Pointer
◦ Selecting a Responsibility Handling Mechanism

◦ Putting it all Together

Reflecting on what we did
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What do we mean by « Smart Pointer »?
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What do we mean by « Smart Pointer »?
Pointers, even raw pointers, are not bad per se

◦ In fact, they are often quite useful!

◦ Contrary to popular belief (or FUD…), pointers do not leak memory by themselves
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What do we mean by « Smart Pointer »?
Pointers, even raw pointers, are not bad per se

◦ In fact, they are often quite useful!

◦ Contrary to popular belief (or FUD…), pointers do not leak memory by themselves

void f() {

const char *p = "I love my instructor";

cout << p << endl; // prints important message

} // p dies here. No leak
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What do we mean by « Smart Pointer »?
Pointers, even raw pointers, are not bad per se

◦ In fact, they are often quite useful!

◦ Contrary to popular belief (or FUD…), pointers do not leak memory by themselves

void f() {

const char *p = "I love my instructor";

cout << p << endl; // prints important message

} // p dies here. No leak

template <class T, size_t N>

void g(const T (&arr)[N]) {

cout << arr[0];

for(auto p = next(begin(arr)); p != end(arr); ++p)

cout << " | " << *p; 

} // p dies once the for loop concludes. No leak
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What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee
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What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ... */ };

X* f();

void g(X*);

int main() {

X *p = f(); // or auto p = f();

g(p);

delete p;

}
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What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ... */ };

X* f();

void g(X*);

int main() {

X *p = f();

g(p);

delete p;

}

In how many ways can
we go wrong here?
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What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ... */ };

X* f();

void g(X*);

int main() {

X *p = f();

g(p);

delete p;

}

Where does *p come from? Some C++ 
code? Some C code? Some code written in 
another language? Something managed by 

the underlying platform?
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What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ... */ };

X* f();

void g(X*);

int main() {

X *p = f();

g(p);

delete p;

}

Will g(p) call delete on p?
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What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ... */ };

X* f();

void g(X*);

int main() {

X *p = f();

g(p);

delete p;

}

Will g(p) throw? If so, what
will happen to p’s pointee?
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What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ... */ };

X* f();

void g(X*);

int main() {

X *p = f();

g(p);

delete p;

}

Should the caller of f(),
main() in this case, even

be doing this?
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What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ... */ };

X* f();

void g(X*);

int main() {

X *p = f();

g(p);

delete p;

}

Was the pointee allocated
through operator new?
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What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ... */ };

X* f();

void g(X*);

int main() {

X *p = f();

g(p);

delete p;

}

Was the pointee allocated
through operator new[]?
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What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ... */ };

X* f();

void g(X*);

int main() {

X *p = f();

g(p);

delete p;

}

Was the pointee allocated
through malloc()?
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What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ... */ };

X* f();

void g(X*);

int main() {

X *p = f();

g(p);

delete p;

}

…was the pointee allocated
through some other mechanism?
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What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ... */ };

X* f();

void g(X*);

int main() {

X *p = f();

g(p);

delete p;

}

19

…was the pointee
dynamically allocated at all?



What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ... */ };

X* f();

void g(X*);

int main() {

X *p = f();

g(p);

delete p;

}

// ... is f() written as:

X* f() {

return new X;

}

// ...or

X* f() {

static X object;

return &object;

}

// ...or...
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…was the pointee
dynamically allocated at all?



What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

X* f() {

return new X;

}

Bonus issue : what if the caller neglects to 
finalize the returned pointee?

With C++17, we can require that the 
return value is used, with

[[nodiscard]], but not that
operator delete is applied to it…
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What do we mean by « Smart Pointer »?
Using raw pointers on the boundaries of function interfaces is tricky, as the responsibility with
respect to the pointee are unclear

◦ The key benefit of smart pointers is that they encode the responsibility with respect to the pointee into
a type 
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What do we mean by « Smart Pointer »?
Using raw pointers on the boundaries of function interfaces is tricky, as the responsibility with
respect to the pointee are unclear

◦ The key benefit of smart pointers is that they encode the responsibility with respect to the pointee
into a type 

It probably deserves to be
expressed in a boldface font
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What do we mean by « Responsibility »?
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What do we mean by « Responsibility »?
Responsibility here can also be expressed as defining the rules or manner of ownership
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What do we mean by « Responsibility »?
Responsibility here can also be expressed as defining the rules or manner of ownership

In C++ terms, ownership for a smart pointer determines what happens with the pointee when
(or if) the object is:

◦ Copied

◦ Moved

◦ Destroyed
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What do we mean by « Responsibility »?
Responsibility here can also be expressed as defining the rules or manner of ownership

In C++ terms, ownership for a smart pointer determines what happens with the pointee when
(or if) the object is:

◦ Copied

◦ Moved

◦ Destroyed

Since smart pointers are objects, the fact that they have well-defined responsibility over the 
pointee can simplify significantly the code of objects handling pointees
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What do we mean by « Responsibility »?
Compare:

◦ https://wandbox.org/permlink/2fV7sI3e2oZk9LEx

◦ https://wandbox.org/permlink/2vYrQfUri467X0S7

Simple, dynamically allocated arrays with fixed sizes
◦ Just the basics (special functions, size(), begin(), end(), some basic aliases)

Using a smart pointer…
◦ …reduces the number of source code lines by 24% 

◦ …makes all explicit exception handling go away
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Key Niches for Smart Pointer
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Key Niches for Smart Pointer
With C++20, the standard library offers the following smart pointers

◦ unique_ptr<T>

◦ shared_ptr<T>

◦ weak_ptr<T>

◦ atomic<shared_ptr<T>>

◦ atomic<weak_ptr<T>>
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Key Niches for Smart Pointer
With C++20, the standard library offers the following smart pointers

◦ unique_ptr<T>
◦ There are variations such as unique_ptr<T[]> and versions that allow custom deleters

◦ shared_ptr<T>
◦ Likewise, there is a shared_ptr<T[]> variation since C++17

◦ weak_ptr<T>
◦ Collaborates with shared_ptr<T> in some corner cases

◦ atomic<shared_ptr<T>>

◦ atomic<weak_ptr<T>>
◦ Useful for specialized, often lock-free applications
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Key Niches for Smart Pointer
With C++20, the standard library offers the following smart pointers

◦ unique_ptr<T>

◦ shared_ptr<T>

◦ weak_ptr<T>

◦ atomic<shared_ptr<T>>

◦ atomic<weak_ptr<T>>

For most use cases, these
two are the main standard 

smart pointers
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Key Niches for Smart Pointer
With C++20, the standard library offers the following smart pointers

◦ unique_ptr<T>

◦ shared_ptr<T>

◦ weak_ptr<T>

◦ atomic<shared_ptr<T>>

◦ atomic<weak_ptr<T>>

In the majority of use cases, unique_ptr<T> 

is your friend; shared_ptr<T> is necessary, 
but more costly and its niche is more specialized
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Key Niches for Smart Pointer
As a reminder:

◦ The key benefit of smart pointers is that they encode the responsibility with respect to the pointee
into a type
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Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the 
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and 
destroying all update a use count. When the last 
owner is destroyed, it destroys the pointee
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Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the 
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and 
destroying all update a use count. When the last 
owner is destroyed, it destroys the pointee

It’s a restricted set of niches…
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Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the 
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and 
destroying all update a use count. When the last 
owner is destroyed, it destroys the pointee

What additional rows could be
interesting?
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Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the 
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and 
destroying all update a use count. When the last 
owner is destroyed, it destroys the pointee

No ownership. Behaves like a reference
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Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the 
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and 
destroying all update a use count. When the last 
owner is destroyed, it destroys the pointee

T* No ownership. Behaves like a reference
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Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the 
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and 
destroying all update a use count. When the last 
owner is destroyed, it destroys the pointee

T* No ownership. Behaves like a reference

Really. This is what raw pointers are 
useful for on function interfaces
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Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the 
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and 
destroying all update a use count. When the last 
owner is destroyed, it destroys the pointee

observer_ptr<T> No ownership. Behaves like a reference

This is another option: a « smart » pointer 
that is really dumb (quoth Walter E. Brown: 

« The dumbest smart pointer »)
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Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the 
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and 
destroying all update a use count. When the last 
owner is destroyed, it destroys the pointee

observer_ptr<T> No ownership. Behaves like a reference

See https://wandbox.org/permlink/wasX6P6GOrYLSpNZ
for an example
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Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the 
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and 
destroying update a use count. When the last 
owner is destroyed, it destroys the pointee

T* or observer_ptr<T> No ownership. Behaves like a reference

No ownership. Behaves like a reference. Offers
added semantics with respect to the pointee
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Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the 
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and 
destroying update a use count. When the last 
owner is destroyed, it destroys the pointee

T* or observer_ptr<T> No ownership. Behaves like a reference

non_null_ptr<T> or other No ownership. Behaves like a reference. Offers
added semantics with respect to the pointee

This is quite useful, as it displaces validation 
semantics from client code to the type
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Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the 
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and 
destroying update a use count. When the last 
owner is destroyed, it destroys the pointee

T* or observer_ptr<T> No ownership. Behaves like a reference

non_null_ptr<T> or other No ownership. Behaves like a reference. Offers
added semantics with respect to the pointee

This is quite useful, as it displaces validation 
semantics from client code to the type

// without

void f(X *p) {

assert(p);

// use p...

}

// with

void f(non_null_ptr<X> p) {

// use p...

}
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Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the 
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and 
destroying update a use count. When the last 
owner is destroyed, it destroys the pointee

T* or observer_ptr<T> No ownership. Behaves like a reference

non_null_ptr<T> or other No ownership. Behaves like a reference. Offers
added semantics with respect to the pointee
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See https://wandbox.org/permlink/rtn1KYSU2Cfyx9Tg for 
an example
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Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the 
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and 
destroying update a use count. When the last 
owner is destroyed, it destroys the pointee

T* or observer_ptr<T> No ownership. Behaves like a reference

non_null_ptr<T> or other… No ownership. Behaves like a reference. Offers
added semantics with respect to the pointee

Exotic semantics
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Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the 
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and 
destroying update a use count. When the last 
owner is destroyed, it destroys the pointee

T* or observer_ptr<T> No ownership. Behaves like a reference

non_null_ptr<T> or other… No ownership. Behaves like a reference. Offers
added semantics with respect to the pointee

remote_ptr<T> Exotic semantics

Idea : calling a function performs the required marshalling. 
Non-trivial code (no time to do this today)…
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Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the 
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and 
destroying update a use count. When the last 
owner is destroyed, it destroys the pointee

T* or observer_ptr<T> No ownership. Behaves like a reference

non_null_ptr<T> or other… No ownership. Behaves like a reference. Offers
added semantics with respect to the pointee

remote_ptr<T> Exotic semantics

Single ownership. Duplicates the pointee when
copied. Destroys the pointee when it is destroyed
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Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the 
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and 
destroying update a use count. When the last 
owner is destroyed, it destroys the pointee

T* or observer_ptr<T> No ownership. Behaves like a reference

non_null_ptr<T> or other… No ownership. Behaves like a reference. Offers
added semantics with respect to the pointee

remote_ptr<T> Exotic semantics

dup_ptr<T> Single ownership. Duplicates the pointee when
copied. Destroys the pointee when it is destroyed

Let’s do this together :)
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Filling a Niche: Growing a Smart Pointer
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Filling a Niche: Growing a Smart Pointer
What are the use-cases for a dup_ptr<T>?

◦ We want pointer that takes ownership of the pointee, and duplicates the pointee when the pointer is
duplicated
◦ In this, unique_ptr<T> – being uncopyable – does not meet our needs

◦ Neither does shared_ptr<T>, where copying the pointer shares the pointee
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Filling a Niche: Growing a Smart Pointer
What are the use-cases for a dup_ptr<T>?

◦ We want pointer that takes ownership of the pointee, and duplicates the pointee when the pointer is
duplicated
◦ In this, unique_ptr<T> – being uncopyable – does not meet our needs

◦ Neither does shared_ptr<T>, where copying the pointer shares the pointee

◦ We seek similar-to-value-semantics for objects that are copyable but that we want to allocate
dynamically
◦ There are objects like this

◦ For example, any object with a private destructor can only be allocated dynamically by client code
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Filling a Niche: Growing a Smart Pointer
Let’s do it one step at a time…
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Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

};
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Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

};

Well, that’s a start :)
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Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p;

};

57



Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p;

};

So, a dup_ptr<T> will host a T*. It’s reasonable.

If we can keep it that way, we’ll share a cool side of
unique_ptr<T> (without custom deleter) in that

sizeof(dup_ptr<T>)==sizeof(T*), which is an 
enviable property (no size overhead when compared to 

a raw pointer)
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Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p;

};

A reasonable example of client code would be:

int main() {

static_assert(

sizeof(dup_ptr<int>{})==sizeof(int*)

);

dup_ptr<int> p;

assert(p.empty()); // or assert(!p)

}
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Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p;

public:

constexpr dup_ptr() noexcept : p{} {

}

constexpr bool empty() const noexcept {

return !p; // or p == nullptr;

}

constexpr operator bool() const noexcept { return !empty(); }

};
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Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p;

public:

constexpr dup_ptr() noexcept : p{} {

}

constexpr bool empty() const noexcept {

return !p;

}

constexpr operator bool() const noexcept { return !empty(); }

};

int main() {

static_assert(

sizeof(dup_ptr<int>{})==sizeof(int*)

);

dup_ptr<int> p;

assert(p.empty());

}
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Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p{}; // or T p = nullptr;

public:

dup_ptr() = default;

constexpr bool empty() const noexcept {

return !p;

}

constexpr operator bool() const noexcept { return !empty(); }

};
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Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p{};

public:

dup_ptr() = default;

constexpr bool empty() const noexcept { 

return !p;

}

constexpr operator bool() const noexcept { return !empty(); }

};

int main() {

static_assert(

sizeof(dup_ptr<int>{})==sizeof(int*)

);

dup_ptr<int> p;

assert(p.empty());

}
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Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p{};

public:

dup_ptr() = default;

constexpr bool empty() const noexcept { return !p; }

constexpr operator bool() const noexcept { return !empty(); }

dup_ptr(T *p) noexcept : p{ p } {

}

~dup_ptr() { delete p; }

};
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Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p{};

public:

dup_ptr() = default;

constexpr bool empty() const noexcept { return !p; }

constexpr operator bool() const noexcept { return !empty(); }

dup_ptr(T *p) noexcept : p{ p } {

}

~dup_ptr() { delete p; }

};

delete p; is a no-op if p is nullptr

We could specialize dup_ptr<T> for the 
case T[] and do delete[] p; here, but I 

will not have the time to do this today (try it!)
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Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p{};

public:

// ...

T& operator*() noexcept { return *p; }

const T& operator*() const noexcept { return *p; }

T* operator->() noexcept { return p; }

const T* operator->() const noexcept { return p; }

};
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Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p{};

public:

// ...

T& operator*() noexcept { return *p; }

const T& operator*() const noexcept { return *p; }

T* operator->() noexcept { return p; }

const T* operator->() const noexcept { return p; }

};

operator*() lets one dereference a dup_ptr<T> as one 
would a T*. Note the noexcept specification : if p is
nullptr, then dereferencing it is undefined behavior, so

noexcept remains reasonable
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Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p{};

public:

// ...

T& operator*() noexcept { return *p; }

const T& operator*() const noexcept { return *p; }

T* operator->() noexcept { return p; }

const T* operator->() const noexcept { return p; }

};
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Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p{};

public:

// ...

T& operator*() noexcept { return *p; }

const T& operator*() const noexcept { return *p; }

T* operator->() noexcept { return p; }

const T* operator->() const noexcept { return p; }

};

operator->() is a bit of a magical
beast : when invoked implicitly on an 

object, it re-invokes operator->() 

on the returned value, until the entity
returned is a raw pointer
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Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p{};

public:

// ...default ctor, ctor accepting T*...

// ...destructor, empty(), operator bool...

// ...operator* and operator-> both const and non-const...

};

We already have a usable, oversimplified pointer wrapper: 
https://wandbox.org/permlink/Y8ORd1Qr8An5IpaL
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Selecting a Responsibility Handling Mechanism
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Selecting a Responsibility Handling 
Mechanism
Now, for the duplication semantics we want to implement…
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Selecting a Responsibility Handling 
Mechanism
Now, for the duplication semantics we want to implement…

One interesting problem is that duplication of the pointee can be of (at least) two flavors:
◦ Copying

◦ Usually applies to objects used directly

◦ Often non-polymorphic,

◦ Could often be final
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Selecting a Responsibility Handling 
Mechanism
Now, for the duplication semantics we want to implement…

One interesting problem is that duplication of the pointee can be of (at least) two flavors:
◦ Copying

◦ Usually applies to objects used directly

◦ Often non-polymorphic,

◦ Could often be final

◦ Cloning
◦ Usually applies to polymorphic objects

◦ Handled indirectly

◦ Typically conceived for extension
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Selecting a Responsibility Handling 
Mechanism
Now, for the duplication semantics we want to implement…

One interesting problem is that duplication of the pointee can be of (at least) two flavors:
◦ Copying

◦ Cloning

C++ has a standard way to duplicate objects through copying: the copy constructor
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Selecting a Responsibility Handling 
Mechanism
Now, for the duplication semantics we want to implement…

One interesting problem is that duplication of the pointee can be of (at least) two flavors:
◦ Copying

◦ Cloning

C++ has a standard way to duplicate objects through copying: the copy constructor

C++ has… many ways to implement cloning
◦ Note that the situation is not much better in many other popular languages
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Selecting a Responsibility Handling 
Mechanism
struct Int {

int n = 0;

Int() = default;

Int(int n) : n{ n } {

}

};

Int modify_locally(Int &x) {

Int backup = x; // copy construction

x.n++; // leaves backup intact

cout << x.n;

return backup;

}

int main() {

Int x; // x.n == 0

x = modify_locally(x); // displays 1

cout << x.n; // displays 0

}
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Selecting a Responsibility Handling 
Mechanism
struct Int {

int n = 0;

Int() = default;

Int(int n) : n{ n } {

}

};

Int modify_locally(Int &x) {

Int backup = x; // copy construction

x.n++; // leaves backup intact

cout << x.n;

return backup;

}

int main() {

Int x; // x.n == 0

x = modify_locally(x); // displays 1

cout << x.n; // displays 0

}

Sign that Int is nicely copy-
constructible: it has no virtual

member functions (deriving publicly
from Int would be… questionable)
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Selecting a Responsibility Handling 
Mechanism
class Image {

// ...

public:

void modify();

virtual void display() const = 0;

virtual ~Image() = default;

};

class Png : public Image {

// ...

void display() const override;

};

Image* modify_locally(Image *x) {

// illegal! Image is abstract

auto backup = new Image{ *x };

x->modify();

x->display();

return backup;

}

int main() {

Image *p = new Png;

p = modify_locally(p);

p->display();

}
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Selecting a Responsibility Handling 
Mechanism
class Image {

// ...

public:

void modify();

virtual void display() const = 0;

virtual ~Image() = default;

};

class Png : public Image {

// ...

void display() const override;

};

Image* modify_locally(Image *x) {

// illegal! Image is abstract

auto backup = new Image{ *x };

x->modify();

x->display();

return backup;

}

int main() {

Image *p = new Png;

p = modify_locally(p);

p->display();

}

Expression new Image 

is illegal since Image is
abstract
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Abstract (pure virtual) 
member function…



Selecting a Responsibility Handling 
Mechanism
class Image {

// ...

public:

void modify();

virtual void display() const {}

virtual ~Image() = default;

};

class Png : public Image {

// ...

void display() const override;

};

Image* modify_locally(Image *x) {

// legal, but incorrect

auto backup = new Image{ *x };

x->modify();

x->display();

return backup;

}

int main() {

Image *p = new Png;

p = modify_locally(p);

p->display();

}
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Selecting a Responsibility Handling 
Mechanism
class Image {

// ...

public:

void modify();

virtual void display() const {}

virtual ~Image() = default;

};

class Png : public Image {

// ...

void display() const override;

};

Image* modify_locally(Image *x) {

// legal, but incorrect

auto backup = new Image{ *x };

x->modify();

x->display();

return backup;

}

int main() {

Image *p = new Png;

p = modify_locally(p);

p->display();

}

This is legal as Image is not 
abstract, but we have slicing: 

we only copy the Image 

part of the object, losing all 
that is specific to Png
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Not abstract anymore… but 
it’s not helpful (abstract was

better in this case)



Selecting a Responsibility Handling 
Mechanism
class Image {

// ...

public:

void modify();

virtual void display() const {}

virtual ~Image() = default;

};

class Png : public Image {

// ...

void display() const override;

};

Image* modify_locally(Image *x) {

// legal, but incorrect

auto backup = new Image{ *x };

x->modify();

x->display();

return backup;

}

int main() {

Image *p = new Png;

p = modify_locally(p);

p->display();

}

The idea here is that only *x 

knows what *x is. We need
subjective duplication… Cloning!
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Selecting a Responsibility Handling 
Mechanism
Cloning is subjective duplication. Typically, this involves:

◦ A virtual clone() member function that duplicates the most derived object

◦ A protected copy constructor that performs the duplication
◦ We want protected as client code cannot usually determine if it’s safe to call

There are other ways to achieve this, but this will suffice for our discussion
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Selecting a Responsibility Handling 
Mechanism
class Image {

protected:

Image(const Image&) = default;

public:

virtual Image *clone() const = 0;

virtual ~Image() = default; // etc.

};

class Png : public Image {

Png* clone() const override

{ return new Png{ *this }; }

protected:

Png(const Png&);

};

Image* modify_locally(Image *x) {

auto backup = x->clone(); // Ok

x->modify();

x->display();

return backup;

}

int main() {

Image *p = new Png;

p = modify_locally(p);

p->display();

}
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Selecting a Responsibility Handling 
Mechanism
class Image {

protected:

Image(const Image&) = default;

public:

virtual Image *clone() const = 0;

virtual ~Image() = default; // etc.

};

class Png : public Image {

Png* clone() const override

{ return new Png{ *this }; }

protected:

Png(const Png&);

};

Image* modify_locally(Image *x) {

auto backup = x->clone(); // Ok

x->modify();

x->display();

return backup;

}

int main() {

Image *p = new Png;

p = modify_locally(p);

p->display();

}

This compiles and works…
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Selecting a Responsibility Handling 
Mechanism
class Image {

protected:

Image(const Image&) = default;

public:

virtual Image *clone() const = 0;

virtual ~Image() = default; // etc.

};

class Png : public Image {

Png* clone() const override

{ return new Png{ *this }; }

protected:

Png(const Png&);

};

Image* modify_locally(Image *x) {

auto backup = x->clone(); // Ok

x->modify();

x->display();

return backup;

}

int main() {

Image *p = new Png;

p = modify_locally(p);

p->display();

}

This compiles and works… 
and leaks (do you see it?). 
Our simple smart pointer 

might visibly have its use…
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Selecting a Responsibility Handling 
Mechanism
What’s the problem space?

◦ Some objects can usually be duplicated through copy construction

◦ Some objects can usually be duplicated through cloning

◦ There might be more exotic cases that have escaped us… so we need an escape hatch
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Selecting a Responsibility Handling 
Mechanism
What’s the problem space?

◦ Some objects can usually be duplicated through copy construction

◦ Some objects can usually be duplicated through cloning

◦ There might be more exotic cases that have escaped us… so we need an escape hatch

There is no such thing as a std::clonable interface
◦ We can make suppositions, but we’ll need to keep our options open

89



Selecting a Responsibility Handling 
Mechanism
Basic idea: let’s design duplicating function objects

◦ To keep the architecture efficient, let’s suppose them to be stateless

◦ For fun, you can tweak our dup_ptr to accept stateful versions, but then you will need to store them
and will lose the sizeof(dup_ptr<T>)==sizeof(T*) property
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Selecting a Responsibility Handling 
Mechanism
struct Copier {

template <class T> T* operator()(const T *p) const {

return new T{ *p };

}

};

struct Cloner {

template <class T> T* operator()(const T *p) const {

return p->clone();

}

};
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Selecting a Responsibility Handling 
Mechanism
struct Copier {

template <class T> T* operator()(const T *p) const {

return new T{ *p };

}

};

struct Cloner {

template <class T> T* operator()(const T *p) const {

return p->clone();

}

};
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We will cover the basic cases we know of implicitly, 
using these two duplication mechanisms



Selecting a Responsibility Handling 
Mechanism
struct Copier {

template <class T> T* operator()(const T *p) const {

return new T{ *p };

}

};

struct Cloner {

template <class T> T* operator()(const T *p) const {

return p->clone();

}

};
The idea is that one can add more duplicating

object types as long as one respects the interface
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Selecting a Responsibility Handling 
Mechanism
struct Copier {

template <class T> T* operator()(const T *p) const {

return new T{ *p };

}

};

struct Cloner {

template <class T> T* operator()(const T *p) const {

return p->clone();

}

};

To keep things simple, we will consider
p!=nullptr to be a precondition of these

duplication mechanisms
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Selecting a Responsibility Handling 
Mechanism
Let’s pick an appropriate-by-default duplicating function object

◦ … but let’s make sure client code can pick one if it « knows better » than we do

95



Selecting a Responsibility Handling 
Mechanism
template <class T, class Dup = ...>

class dup_ptr {

T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

};

96



Selecting a Responsibility Handling 
Mechanism
template <class T, class Dup = ...>

class dup_ptr {

T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

};

Type Dup would be what is
often called a Policy class
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Selecting a Responsibility Handling 
Mechanism
How do we pick the right type for Dup?

◦ One option is to say « Suppose a clonable interface of our design; if T inherits from clonable, 
then we clone, otherwise we copy »
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Selecting a Responsibility Handling 
Mechanism
How do we pick the right type for Dup?

◦ One option is to say « Suppose a clonable interface of our design; if T inherits from clonable, 
then we clone, otherwise we copy »

// hypothetical « clonable » interface

struct clonable {

virtual clonable *clone() const = 0;

virtual ~clonable() = default;

protected:

clonable() = default;

clonable(const clonable&) = default;

};
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Selecting a Responsibility Handling 
Mechanism
#include <type_traits>

template <class T, class Dup = std::conditional_t<

std::is_base_of_v<clonable, T>, Cloner, Copier

>>

class dup_ptr {

T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

};
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Selecting a Responsibility Handling 
Mechanism
#include <type_traits>

template <class T, class Dup = std::conditional_t<

std::is_base_of_v<clonable, T>, Cloner, Copier

>>

class dup_ptr {

T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

};

conditional_t<cond,T,F> is equivalent to type
T if cond is true, and equivalent to type F if

cond is false. It’s a compile-time « if » for types
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Selecting a Responsibility Handling 
Mechanism
#include <type_traits>

template <class T, class Dup = std::conditional_t<

std::is_base_of_v<clonable, T>, Cloner, Copier

>>

class dup_ptr {

T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

};

102

// easy to roll out your own:

template <bool, class, class> struct conditional_;

template <class T, class F>

struct conditional_<true, T, F> {

using type = T;

};

template <class T, class F>

struct conditional_<false, T, F> {

using type = F;

};

template <bool cond, class T, class F>

using conditional_t_ = typename conditional_<cond,T,F>::type;



Selecting a Responsibility Handling 
Mechanism
#include <type_traits>

template <class T, class Dup = std::conditional_t<

std::is_base_of_v<clonable, T>, Cloner, Copier

>>

class dup_ptr {

T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

};

What we are doing here is picking a default duplication 
strategy for T based on the properties of T

If this default strategy is inappropriate, client code can
explicitly use one that suits its needs
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Selecting a Responsibility Handling 
Mechanism
How do we pick the right type for Dup?

◦ One option is to say « Suppose a clonable interface of our design; if T inherits from clonable, 
then we clone, otherwise we copy »
◦ This works but is un-idiomatic for C++

◦ Imposing a specific interface to types is intrusive coupling. Some languages encourage this, but not us

104



Selecting a Responsibility Handling 
Mechanism
How do we pick the right type for Dup?

◦ One option is to say « Suppose a clonable interface of our design; if T inherits from clonable, 
then we clone, otherwise we copy »
◦ This works but is un-idiomatic for C++

◦ Imposing a specific interface to types is intrusive coupling. Some languages encourage this, but not us

◦ Another option is to say « if T has a const member function named clone, then we clone, 
otherwise we copy »
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Selecting a Responsibility Handling 
Mechanism
#include <type_traits>

template <class, class = void> struct has_clone : std::false_type { };

template <class T>

struct has_clone <T, std::void_t< decltype(std::declval<const T*>()->clone()) >>

: std::true_type {

};

template <class T> constexpr bool has_clone_v = has_clone<T>::value;

template <class T, class Dup = std::conditional_t<has_clone_v<T>, Cloner, Copier>>

class dup_ptr {

T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

};
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Selecting a Responsibility Handling 
Mechanism
#include <type_traits>

template <class, class = void> struct has_clone : std::false_type { };

template <class T>

struct has_clone <T, std::void_t< decltype(std::declval<const T*>()->clone()) >>

: std::true_type {

};

template <class T> constexpr bool has_clone_v = has_clone<T>::value;

template <class T, class Dup = std::conditional_t<has_clone_v<T>, Cloner, Copier>>

class dup_ptr {

T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

};

void_t was invented by Walter E. Brown. It’s a brilliant
trick that lets us detect the validity of expressions at compile 

time and make choices based on the result

https://en.cppreference.com/w/cpp/types/void_t
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Selecting a Responsibility Handling 
Mechanism
#include <type_traits>

template <class, class = void> struct has_clone : std::false_type { };

template <class T>

struct has_clone <T, std::void_t< decltype(std::declval<const T*>()->clone()) >>

: std::true_type {

};

template <class T> constexpr bool has_clone_v = has_clone<T>::value;

template <class T, class Dup = std::conditional_t<has_clone_v<T>, Cloner, Copier>>

class dup_ptr {

T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

};

declval<T>() is an hypothetical (no joke!) function that lets one 
reason at compile-time as if we had a T, regardless of how that T 

would have been constructed

The whole « implementation » is:

template <class T> T&& declval();
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Selecting a Responsibility Handling 
Mechanism
#include <type_traits>

template <class, class = void> struct has_clone : std::false_type { };

template <class T>

struct has_clone <T, std::void_t< decltype(std::declval<const T*>()->clone()) >>

: std::true_type {

};

template <class T> constexpr bool has_clone_v = has_clone<T>::value;

template <class T, class Dup = std::conditional_t<has_clone_v<T>, Cloner, Copier>>

class dup_ptr {

T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

};

Here, concretely, we are validating that it would be possible 
to call a clone() member function on a const T*
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Selecting a Responsibility Handling 
Mechanism
#include <type_traits>

template <class, class = void> struct has_clone : std::false_type { };

template <class T>

struct has_clone <T, std::void_t< decltype(std::declval<const T*>()->clone()) >>

: std::true_type {

};

template <class T> constexpr bool has_clone_v = has_clone<T>::value;

template <class T, class Dup = std::conditional_t<has_clone_v<T>, Cloner, Copier>>

class dup_ptr {

T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

};

Thus, instead of imposing a common base class to all 
clonable types, we are looking for a member function with a 

specific name and signature
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Selecting a Responsibility Handling 
Mechanism
How do we pick the right type for Dup?

◦ One option is to say « Suppose a clonable interface of our design; if T inherits from clonable, 
then we clone, otherwise we copy »
◦ This works but is un-idiomatic for C++

◦ Imposing a specific interface to types is intrusive coupling. Some languages encourage this, but not us

◦ Another option is to say « if T has a const member function named clone, then we clone, 
otherwise we copy »

◦ If we have a C++20 compiler, we can simply define a clonable concept
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Selecting a Responsibility Handling 
Mechanism
#include <concepts>

template <class T>

concept clonable = requires(const T *p) {

{ p->clone() } -> std::convertible_to<T*>;

};

template <class T, class Dup = std::conditional_t<clonable<T>, Cloner, Copier>>

class dup_ptr {

T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

};
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Selecting a Responsibility Handling 
Mechanism
#include <concepts>

template <class T>

concept clonable = requires(const T *p) {

{ p->clone() } -> std::convertible_to<T*>;

};

template <class T, class Dup = std::conditional_t<clonable<T>, Cloner, Copier>>

class dup_ptr {

T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

};

Here, we are stating T is clonable

if, given a const T *, we can invoke
clone() on it and get as a result

something convertible to T*
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Selecting a Responsibility Handling 
Mechanism
#include <concepts>

template <class T>

concept clonable = requires(const T *p) {

{ p->clone() } -> std::convertible_to<T*>;

};

template <class T> requires clonable<T> class dup_ptr {

// ... Clone whenever we want to duplicate *p

};

template <class T> requires !clonable<T> class dup_ptr {

// ... Copy whenever we want to duplicate *p

};
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Selecting a Responsibility Handling 
Mechanism
#include <concepts>

template <class T>

concept clonable = requires(const T *p) {

{ p->clone() } -> std::convertible_to<T*>;

};

template <class T> requires clonable<T> class dup_ptr {

// ... Clone whenever we want to duplicate *p

};

template <class T> requires !clonable<T> class dup_ptr {

// ... Copy whenever we want to duplicate *p

};

We could to it this way if we were
convinced there would never be other
options. In our case, keeping a client-

approved escape hatch is probably safer
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Selecting a Responsibility Handling 
Mechanism
How do we pick the right type for Dup?

◦ One option is to say « Suppose a clonable interface of our design; if T inherits from clonable, 
then we clone, otherwise we copy »
◦ This works but is un-idiomatic for C++

◦ Imposing a specific interface to types is intrusive coupling. Some languages encourage this, but not us

◦ Another option is to say « if T has a const member function named clone, then we clone, 
otherwise we copy »

◦ If we have a C++20 compiler, we can simply define a clonable concept

What if client code has more exotic duplication mechanisms?
◦ Then, client code will supply its own Dup policy instead of relying on our defaults
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Selecting a Responsibility Handling 
Mechanism
template <class T, class Dup = ...>

class dup_ptr {

T *p{};

// ...

};

class Exo { // exotic :)

// private

Exo(const Exo&);

public:

Exo() = default;

Exo* duplicate() const;

};

template <class T, class D>

void f(dup_ptr<T, D> p) { /* use *p */ }

int main() {

struct exo_dup {

Exo* operator()(const Exo *p) const {

return p->duplicate();

}

};

dup_ptr<Exo, exo_dup>

p{ new Exo };

f(p);

}
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Selecting a Responsibility Handling 
Mechanism
template <class T, class Dup = ...>

class dup_ptr {

T *p{};

// ...

};

class Exo { // exotic :)

// private

Exo(const Exo&);

public:

Exo() = default;

Exo* duplicate() const;

};

template <class T, class D>

void f(dup_ptr<T, D> p) { /* use *p */ }

int main() {

struct exo_dup {

Exo* operator()(const Exo *p) const {

return p->duplicate();

}

};

dup_ptr<Exo, exo_dup>

p{ new Exo };

f(p);

}
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Selecting a Responsibility Handling 
Mechanism
template <class T, class Dup = ...>

class dup_ptr {

T *p{};

// ...

};

class Exo { // exotic :)

// private

Exo(const Exo&);

public:

Exo() = default;

Exo* duplicate() const;

};

template <class T, class D>

void f(dup_ptr<T, D> p) { /* use *p */  }

auto duplicator() {

return [](auto p) {

return p->duplicate();

};

}

int main() {

dup_ptr<Exo, decltype(duplicator())>

p{ new Exo };

f(p);

}
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Putting it all Together
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Putting it all Together
A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
◦ Default constructor

◦ Copy constructor

◦ Move constructor

◦ Copy assignment

◦ Move assignment

◦ Destructor
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Putting it all Together
A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
◦ Default constructor

◦ Copy constructor

◦ Move constructor

◦ Copy assignment

◦ Move assignment

◦ Destructor
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Putting it all Together
A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
◦ Default constructor

◦ Copy constructor

◦ Move constructor

◦ Copy assignment

◦ Move assignment

◦ Destructor

We will look at the others too, but 
duplication of the pointee will occur in 

copying functions
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Putting it all Together
A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
◦ Default constructor

◦ Copy constructor

◦ Move constructor

◦ Copy assignment

◦ Move assignment

◦ Destructor

Some of these functions will use the copy-and-swap 
idiom for assignment. We will only define the swap() 

member function between two dup_ptr<T,D> 

with the same D type:

void swap(dup_ptr &other) {

using std::swap;

swap(p, other.p);

}
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Putting it all Together
A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
◦ Default constructor

◦ Copy constructor

◦ Move constructor

◦ Copy assignment

◦ Move assignment

◦ Destructor

These two have been 
covered previously
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Putting it all Together
A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
◦ Default constructor

◦ Copy constructor

◦ Move constructor

◦ Copy assignment

◦ Move assignment

◦ Destructor

template <class T, class Dup = ...>

class dup_ptr {

T *p{};

public:

dup_ptr() = default;

~dup_ptr() {

delete p;

}

// ...

};
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Putting it all Together
A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
◦ Default constructor

◦ Copy constructor

◦ Move constructor

◦ Copy assignment

◦ Move assignment

◦ Destructor

Move operations can be implemented simply
between two dup_ptr<T,D> instances if we

assume D to be stateless (our situation)

If we decide that the D object needs to be stored, 
then we need to reflect on whether it should be
movable, and what it should mean in that case
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Putting it all Together
A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
◦ Default constructor

◦ Copy constructor

◦ Move constructor

◦ Copy assignment

◦ Move assignment

◦ Destructor

// ...

dup_ptr(dup_ptr &&other)

: p{ std::exchange(other.p, nullptr) } {

}

dup_ptr& operator=(dup_ptr &&other) {

dup_ptr{ std::move(other) }.swap(*this);

return *this;

}

// ...
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Putting it all Together
A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
◦ Default constructor

◦ Copy constructor

◦ Move constructor

◦ Copy assignment

◦ Move assignment

◦ Destructor

The copy operations will duplicate the pointee
according to the duplication policy associated with

the type (the D in dup_ptr<T,D>).

We will not try do duplicate a null pointer, thus
respecting the duplication policies’ precondition
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Putting it all Together
A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
◦ Default constructor

◦ Copy constructor

◦ Move constructor

◦ Copy assignment

◦ Move assignment

◦ Destructor

// ...

dup_ptr(const dup_ptr &other)

: p{ other.empty()? nullptr : Dup{}(other.p) } {

}

dup_ptr& operator=(const dup_ptr &other) {

dup_ptr{ other }.swap(*this);

return *this;

}

// ...
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Putting it all Together
A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
◦ Default constructor

◦ Copy constructor

◦ Move constructor

◦ Copy assignment

◦ Move assignment

◦ Destructor

Full source code is available on https://wandbox.org/permlink/zuXLKc8tUKpdKaYu
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Putting it all Together
A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
◦ Default constructor

◦ Copy constructor

◦ Move constructor

◦ Copy assignment

◦ Move assignment

◦ Destructor

Full source code is available on https://wandbox.org/permlink/zuXLKc8tUKpdKaYu

There’s a lot more we could do with time: 
specialize for the T[] case, add

relational operators, implement covariant 
constructors and assignment, etc.
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Reflecting on what we did
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Reflecting on what we did
In C++, we don’t need to use pointers all that much, but when we do…

Raw pointers are fine and useful sometimes

However, their responsibility (if any) towards the pointee is often unclear
◦ Ideally, either encapsulate them in « handle types » such as std::vector<T> or std::string, 

or use them as non-owning observers of their pointee

The key benefit of smart pointers is that they encode the responsibility with respect to the 
pointee into a type

◦ Their purpose is clearer
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Reflecting on what we did
Standard C++ smart pointers are small in number but very good at what they do

◦ std::unique_ptr is a beautiful idea
◦ Simplifies code and solves many problems at little-to-no cost depending on the use-case

◦ std::shared_ptr has a more narrow niche, but occupies it well
◦ It’s tricky to write, so prefer using standard, well-tested ones to rolling out your own
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Reflecting on what we did
There are niches not (yet) covered by standard smart pointers

◦ We covered one with dup_ptr

◦ We wrote code to have fun, obviously, but we had a use-case in mind

Just because a niche is left uncovered does not mean we should standardize a solution for it
◦ Sometimes, the niche is too narrow

◦ At other times, the solutions we know are not of std::-level quality
◦ I would not dare suggesting a strategy that introduces a mandatory dependency on a std::clonable interface!
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Reflecting on what we did
Our dup_ptr<T,D> had interesting properties:

◦ We implicitly supplied a D type for the most common cases

◦ We allowed client code to supply its own D type for atypical cases

◦ Provided D remains stateless and we do not need to store it, we can provide a dup_ptr<T> which
incurs no size overhead when compared with T*
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Reflecting on what we did
Deducing a D policy class for dup_ptr<T,D> can be done in various ways

◦ Imposing an intrusive type relationship
◦ if T derives from clonable…

◦ Detecting the validity of relied-upon expressions
◦ if I can call clone() from an hypothetical const T*…

◦ Detecting conformity to a concept
◦ if T satisfies clonable…

◦ etc.
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Reflecting on what we did
I had fun, hope you had fun too!
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Questions?
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