
Growing a Smart Pointer
PATRICE ROY (PATRICER AT GMAIL.COM)

C++ USERS GROUP, MUNICH, JAN. 2021

Who am I?
Father of five (four girls, one boy), ages 26 to 7 (might explain some background noises)

Feeds and cleans up after a varying number of animals (might explain some background noises too)
◦ Look for Paws of Britannia with your favorite search engine

Used to write military flight simulator code, among other things
◦ CAE Electronics Ltd, IREQ

Full-time teacher since 1998
◦ Collège Lionel-Groulx, Université de Sherbrooke
◦ Works a lot with game programmers

Incidentally, WG21 and WG23 member (although I’ve been really busy recently)
◦ Involved in SG14, among other study groups
◦ Occasional WG21 secretary

And so on…

2

Overview
What do we mean by « Smart Pointer »?

What do we mean by « Responsibility »?

Key Niches for Smart Pointers

Filling a Niche: Growing a Smart Pointer
◦ Selecting a Responsibility Handling Mechanism

◦ Putting it all Together

Reflecting on what we did

3

What do we mean by « Smart Pointer »?

4

What do we mean by « Smart Pointer »?
Pointers, even raw pointers, are not bad per se

◦ In fact, they are often quite useful!

◦ Contrary to popular belief (or FUD…), pointers do not leak memory by themselves

5

What do we mean by « Smart Pointer »?
Pointers, even raw pointers, are not bad per se

◦ In fact, they are often quite useful!

◦ Contrary to popular belief (or FUD…), pointers do not leak memory by themselves

void f() {

const char *p = "I love my instructor";

cout << p << endl; // prints important message

} // p dies here. No leak

6

What do we mean by « Smart Pointer »?
Pointers, even raw pointers, are not bad per se

◦ In fact, they are often quite useful!

◦ Contrary to popular belief (or FUD…), pointers do not leak memory by themselves

void f() {

const char *p = "I love my instructor";

cout << p << endl; // prints important message

} // p dies here. No leak

template <class T, size_t N>

void g(const T (&arr)[N]) {

cout << arr[0];

for(auto p = next(begin(arr)); p != end(arr); ++p)

cout << " | " << *p;

} // p dies once the for loop concludes. No leak

7

What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

8

What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ... */ };

X* f();

void g(X*);

int main() {

X *p = f(); // or auto p = f();

g(p);

delete p;

}

9

What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ... */ };

X* f();

void g(X*);

int main() {

X *p = f();

g(p);

delete p;

}

In how many ways can
we go wrong here?

10

What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ... */ };

X* f();

void g(X*);

int main() {

X *p = f();

g(p);

delete p;

}

Where does *p come from? Some C++
code? Some C code? Some code written in
another language? Something managed by

the underlying platform?

11

What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ... */ };

X* f();

void g(X*);

int main() {

X *p = f();

g(p);

delete p;

}

Will g(p) call delete on p?

12

What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ... */ };

X* f();

void g(X*);

int main() {

X *p = f();

g(p);

delete p;

}

Will g(p) throw? If so, what
will happen to p’s pointee?

13

What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ... */ };

X* f();

void g(X*);

int main() {

X *p = f();

g(p);

delete p;

}

Should the caller of f(),
main() in this case, even

be doing this?

14

What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ... */ };

X* f();

void g(X*);

int main() {

X *p = f();

g(p);

delete p;

}

Was the pointee allocated
through operator new?

15

What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ... */ };

X* f();

void g(X*);

int main() {

X *p = f();

g(p);

delete p;

}

Was the pointee allocated
through operator new[]?

16

What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ... */ };

X* f();

void g(X*);

int main() {

X *p = f();

g(p);

delete p;

}

Was the pointee allocated
through malloc()?

17

What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ... */ };

X* f();

void g(X*);

int main() {

X *p = f();

g(p);

delete p;

}

…was the pointee allocated
through some other mechanism?

18

What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ... */ };

X* f();

void g(X*);

int main() {

X *p = f();

g(p);

delete p;

}

19

…was the pointee
dynamically allocated at all?

What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

class X { /* ... */ };

X* f();

void g(X*);

int main() {

X *p = f();

g(p);

delete p;

}

// ... is f() written as:

X* f() {

return new X;

}

// ...or

X* f() {

static X object;

return &object;

}

// ...or...

20

…was the pointee
dynamically allocated at all?

What do we mean by « Smart Pointer »?
The main problem with pointers tends to be managing the lifetime of the pointee

X* f() {

return new X;

}

Bonus issue : what if the caller neglects to
finalize the returned pointee?

With C++17, we can require that the
return value is used, with

[[nodiscard]], but not that
operator delete is applied to it…

21

What do we mean by « Smart Pointer »?
Using raw pointers on the boundaries of function interfaces is tricky, as the responsibility with
respect to the pointee are unclear

◦ The key benefit of smart pointers is that they encode the responsibility with respect to the pointee into
a type

22

What do we mean by « Smart Pointer »?
Using raw pointers on the boundaries of function interfaces is tricky, as the responsibility with
respect to the pointee are unclear

◦ The key benefit of smart pointers is that they encode the responsibility with respect to the pointee
into a type

It probably deserves to be
expressed in a boldface font

23

What do we mean by « Responsibility »?

24

What do we mean by « Responsibility »?
Responsibility here can also be expressed as defining the rules or manner of ownership

25

What do we mean by « Responsibility »?
Responsibility here can also be expressed as defining the rules or manner of ownership

In C++ terms, ownership for a smart pointer determines what happens with the pointee when
(or if) the object is:

◦ Copied

◦ Moved

◦ Destroyed

26

What do we mean by « Responsibility »?
Responsibility here can also be expressed as defining the rules or manner of ownership

In C++ terms, ownership for a smart pointer determines what happens with the pointee when
(or if) the object is:

◦ Copied

◦ Moved

◦ Destroyed

Since smart pointers are objects, the fact that they have well-defined responsibility over the
pointee can simplify significantly the code of objects handling pointees

27

What do we mean by « Responsibility »?
Compare:

◦ https://wandbox.org/permlink/2fV7sI3e2oZk9LEx

◦ https://wandbox.org/permlink/2vYrQfUri467X0S7

Simple, dynamically allocated arrays with fixed sizes
◦ Just the basics (special functions, size(), begin(), end(), some basic aliases)

Using a smart pointer…
◦ …reduces the number of source code lines by 24%

◦ …makes all explicit exception handling go away

28

https://wandbox.org/permlink/2fV7sI3e2oZk9LEx
https://wandbox.org/permlink/2vYrQfUri467X0S7

Key Niches for Smart Pointer

29

Key Niches for Smart Pointer
With C++20, the standard library offers the following smart pointers

◦ unique_ptr<T>

◦ shared_ptr<T>

◦ weak_ptr<T>

◦ atomic<shared_ptr<T>>

◦ atomic<weak_ptr<T>>

30

Key Niches for Smart Pointer
With C++20, the standard library offers the following smart pointers

◦ unique_ptr<T>
◦ There are variations such as unique_ptr<T[]> and versions that allow custom deleters

◦ shared_ptr<T>
◦ Likewise, there is a shared_ptr<T[]> variation since C++17

◦ weak_ptr<T>
◦ Collaborates with shared_ptr<T> in some corner cases

◦ atomic<shared_ptr<T>>

◦ atomic<weak_ptr<T>>
◦ Useful for specialized, often lock-free applications

31

Key Niches for Smart Pointer
With C++20, the standard library offers the following smart pointers

◦ unique_ptr<T>

◦ shared_ptr<T>

◦ weak_ptr<T>

◦ atomic<shared_ptr<T>>

◦ atomic<weak_ptr<T>>

For most use cases, these
two are the main standard

smart pointers

32

Key Niches for Smart Pointer
With C++20, the standard library offers the following smart pointers

◦ unique_ptr<T>

◦ shared_ptr<T>

◦ weak_ptr<T>

◦ atomic<shared_ptr<T>>

◦ atomic<weak_ptr<T>>

In the majority of use cases, unique_ptr<T>

is your friend; shared_ptr<T> is necessary,
but more costly and its niche is more specialized

33

Key Niches for Smart Pointer
As a reminder:

◦ The key benefit of smart pointers is that they encode the responsibility with respect to the pointee
into a type

34

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and
destroying all update a use count. When the last
owner is destroyed, it destroys the pointee

35

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and
destroying all update a use count. When the last
owner is destroyed, it destroys the pointee

It’s a restricted set of niches…

36

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and
destroying all update a use count. When the last
owner is destroyed, it destroys the pointee

What additional rows could be
interesting?

37

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and
destroying all update a use count. When the last
owner is destroyed, it destroys the pointee

No ownership. Behaves like a reference

38

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and
destroying all update a use count. When the last
owner is destroyed, it destroys the pointee

T* No ownership. Behaves like a reference

39

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and
destroying all update a use count. When the last
owner is destroyed, it destroys the pointee

T* No ownership. Behaves like a reference

Really. This is what raw pointers are
useful for on function interfaces

40

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and
destroying all update a use count. When the last
owner is destroyed, it destroys the pointee

observer_ptr<T> No ownership. Behaves like a reference

This is another option: a « smart » pointer
that is really dumb (quoth Walter E. Brown:

« The dumbest smart pointer »)

41

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and
destroying all update a use count. When the last
owner is destroyed, it destroys the pointee

observer_ptr<T> No ownership. Behaves like a reference

See https://wandbox.org/permlink/wasX6P6GOrYLSpNZ
for an example

42

https://wandbox.org/permlink/wasX6P6GOrYLSpNZ

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and
destroying update a use count. When the last
owner is destroyed, it destroys the pointee

T* or observer_ptr<T> No ownership. Behaves like a reference

No ownership. Behaves like a reference. Offers
added semantics with respect to the pointee

43

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and
destroying update a use count. When the last
owner is destroyed, it destroys the pointee

T* or observer_ptr<T> No ownership. Behaves like a reference

non_null_ptr<T> or other No ownership. Behaves like a reference. Offers
added semantics with respect to the pointee

This is quite useful, as it displaces validation
semantics from client code to the type

44

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and
destroying update a use count. When the last
owner is destroyed, it destroys the pointee

T* or observer_ptr<T> No ownership. Behaves like a reference

non_null_ptr<T> or other No ownership. Behaves like a reference. Offers
added semantics with respect to the pointee

This is quite useful, as it displaces validation
semantics from client code to the type

// without

void f(X *p) {

assert(p);

// use p...

}

// with

void f(non_null_ptr<X> p) {

// use p...

}

45

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and
destroying update a use count. When the last
owner is destroyed, it destroys the pointee

T* or observer_ptr<T> No ownership. Behaves like a reference

non_null_ptr<T> or other No ownership. Behaves like a reference. Offers
added semantics with respect to the pointee

46

See https://wandbox.org/permlink/rtn1KYSU2Cfyx9Tg for
an example

https://wandbox.org/permlink/rtn1KYSU2Cfyx9Tg

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and
destroying update a use count. When the last
owner is destroyed, it destroys the pointee

T* or observer_ptr<T> No ownership. Behaves like a reference

non_null_ptr<T> or other… No ownership. Behaves like a reference. Offers
added semantics with respect to the pointee

Exotic semantics

47

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and
destroying update a use count. When the last
owner is destroyed, it destroys the pointee

T* or observer_ptr<T> No ownership. Behaves like a reference

non_null_ptr<T> or other… No ownership. Behaves like a reference. Offers
added semantics with respect to the pointee

remote_ptr<T> Exotic semantics

Idea : calling a function performs the required marshalling.
Non-trivial code (no time to do this today)…

48

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and
destroying update a use count. When the last
owner is destroyed, it destroys the pointee

T* or observer_ptr<T> No ownership. Behaves like a reference

non_null_ptr<T> or other… No ownership. Behaves like a reference. Offers
added semantics with respect to the pointee

remote_ptr<T> Exotic semantics

Single ownership. Duplicates the pointee when
copied. Destroys the pointee when it is destroyed

49

Key Niches for Smart Pointer
Type Niche

unique_ptr<T> Single ownership. Non-copyable. Destroys the
pointee when it is destroyed

shared_ptr<T> Shared ownership. Copying, assigning and
destroying update a use count. When the last
owner is destroyed, it destroys the pointee

T* or observer_ptr<T> No ownership. Behaves like a reference

non_null_ptr<T> or other… No ownership. Behaves like a reference. Offers
added semantics with respect to the pointee

remote_ptr<T> Exotic semantics

dup_ptr<T> Single ownership. Duplicates the pointee when
copied. Destroys the pointee when it is destroyed

Let’s do this together :)

50

Filling a Niche: Growing a Smart Pointer

51

Filling a Niche: Growing a Smart Pointer
What are the use-cases for a dup_ptr<T>?

◦ We want pointer that takes ownership of the pointee, and duplicates the pointee when the pointer is
duplicated
◦ In this, unique_ptr<T> – being uncopyable – does not meet our needs

◦ Neither does shared_ptr<T>, where copying the pointer shares the pointee

52

Filling a Niche: Growing a Smart Pointer
What are the use-cases for a dup_ptr<T>?

◦ We want pointer that takes ownership of the pointee, and duplicates the pointee when the pointer is
duplicated
◦ In this, unique_ptr<T> – being uncopyable – does not meet our needs

◦ Neither does shared_ptr<T>, where copying the pointer shares the pointee

◦ We seek similar-to-value-semantics for objects that are copyable but that we want to allocate
dynamically
◦ There are objects like this

◦ For example, any object with a private destructor can only be allocated dynamically by client code

53

Filling a Niche: Growing a Smart Pointer
Let’s do it one step at a time…

54

Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

};

55

Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

};

Well, that’s a start :)

56

Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p;

};

57

Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p;

};

So, a dup_ptr<T> will host a T*. It’s reasonable.

If we can keep it that way, we’ll share a cool side of
unique_ptr<T> (without custom deleter) in that

sizeof(dup_ptr<T>)==sizeof(T*), which is an
enviable property (no size overhead when compared to

a raw pointer)

58

Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p;

};

A reasonable example of client code would be:

int main() {

static_assert(

sizeof(dup_ptr<int>{})==sizeof(int*)

);

dup_ptr<int> p;

assert(p.empty()); // or assert(!p)

}

59

Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p;

public:

constexpr dup_ptr() noexcept : p{} {

}

constexpr bool empty() const noexcept {

return !p; // or p == nullptr;

}

constexpr operator bool() const noexcept { return !empty(); }

};

60

Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p;

public:

constexpr dup_ptr() noexcept : p{} {

}

constexpr bool empty() const noexcept {

return !p;

}

constexpr operator bool() const noexcept { return !empty(); }

};

int main() {

static_assert(

sizeof(dup_ptr<int>{})==sizeof(int*)

);

dup_ptr<int> p;

assert(p.empty());

}

61

Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p{}; // or T p = nullptr;

public:

dup_ptr() = default;

constexpr bool empty() const noexcept {

return !p;

}

constexpr operator bool() const noexcept { return !empty(); }

};

62

Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p{};

public:

dup_ptr() = default;

constexpr bool empty() const noexcept {

return !p;

}

constexpr operator bool() const noexcept { return !empty(); }

};

int main() {

static_assert(

sizeof(dup_ptr<int>{})==sizeof(int*)

);

dup_ptr<int> p;

assert(p.empty());

}

63

Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p{};

public:

dup_ptr() = default;

constexpr bool empty() const noexcept { return !p; }

constexpr operator bool() const noexcept { return !empty(); }

dup_ptr(T *p) noexcept : p{ p } {

}

~dup_ptr() { delete p; }

};

64

Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p{};

public:

dup_ptr() = default;

constexpr bool empty() const noexcept { return !p; }

constexpr operator bool() const noexcept { return !empty(); }

dup_ptr(T *p) noexcept : p{ p } {

}

~dup_ptr() { delete p; }

};

delete p; is a no-op if p is nullptr

We could specialize dup_ptr<T> for the
case T[] and do delete[] p; here, but I

will not have the time to do this today (try it!)

65

Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p{};

public:

// ...

T& operator*() noexcept { return *p; }

const T& operator*() const noexcept { return *p; }

T* operator->() noexcept { return p; }

const T* operator->() const noexcept { return p; }

};

66

Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p{};

public:

// ...

T& operator*() noexcept { return *p; }

const T& operator*() const noexcept { return *p; }

T* operator->() noexcept { return p; }

const T* operator->() const noexcept { return p; }

};

operator*() lets one dereference a dup_ptr<T> as one
would a T*. Note the noexcept specification : if p is
nullptr, then dereferencing it is undefined behavior, so

noexcept remains reasonable

67

Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p{};

public:

// ...

T& operator*() noexcept { return *p; }

const T& operator*() const noexcept { return *p; }

T* operator->() noexcept { return p; }

const T* operator->() const noexcept { return p; }

};

68

Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p{};

public:

// ...

T& operator*() noexcept { return *p; }

const T& operator*() const noexcept { return *p; }

T* operator->() noexcept { return p; }

const T* operator->() const noexcept { return p; }

};

operator->() is a bit of a magical
beast : when invoked implicitly on an

object, it re-invokes operator->()

on the returned value, until the entity
returned is a raw pointer

69

Filling a Niche: Growing a Smart Pointer
template <class T>

class dup_ptr {

T *p{};

public:

// ...default ctor, ctor accepting T*...

// ...destructor, empty(), operator bool...

// ...operator* and operator-> both const and non-const...

};

We already have a usable, oversimplified pointer wrapper:
https://wandbox.org/permlink/Y8ORd1Qr8An5IpaL

70

https://wandbox.org/permlink/Y8ORd1Qr8An5IpaL

Selecting a Responsibility Handling Mechanism

71

Selecting a Responsibility Handling
Mechanism
Now, for the duplication semantics we want to implement…

72

Selecting a Responsibility Handling
Mechanism
Now, for the duplication semantics we want to implement…

One interesting problem is that duplication of the pointee can be of (at least) two flavors:
◦ Copying

◦ Usually applies to objects used directly

◦ Often non-polymorphic,

◦ Could often be final

73

Selecting a Responsibility Handling
Mechanism
Now, for the duplication semantics we want to implement…

One interesting problem is that duplication of the pointee can be of (at least) two flavors:
◦ Copying

◦ Usually applies to objects used directly

◦ Often non-polymorphic,

◦ Could often be final

◦ Cloning
◦ Usually applies to polymorphic objects

◦ Handled indirectly

◦ Typically conceived for extension

74

Selecting a Responsibility Handling
Mechanism
Now, for the duplication semantics we want to implement…

One interesting problem is that duplication of the pointee can be of (at least) two flavors:
◦ Copying

◦ Cloning

C++ has a standard way to duplicate objects through copying: the copy constructor

75

Selecting a Responsibility Handling
Mechanism
Now, for the duplication semantics we want to implement…

One interesting problem is that duplication of the pointee can be of (at least) two flavors:
◦ Copying

◦ Cloning

C++ has a standard way to duplicate objects through copying: the copy constructor

C++ has… many ways to implement cloning
◦ Note that the situation is not much better in many other popular languages

76

Selecting a Responsibility Handling
Mechanism
struct Int {

int n = 0;

Int() = default;

Int(int n) : n{ n } {

}

};

Int modify_locally(Int &x) {

Int backup = x; // copy construction

x.n++; // leaves backup intact

cout << x.n;

return backup;

}

int main() {

Int x; // x.n == 0

x = modify_locally(x); // displays 1

cout << x.n; // displays 0

}

77

Selecting a Responsibility Handling
Mechanism
struct Int {

int n = 0;

Int() = default;

Int(int n) : n{ n } {

}

};

Int modify_locally(Int &x) {

Int backup = x; // copy construction

x.n++; // leaves backup intact

cout << x.n;

return backup;

}

int main() {

Int x; // x.n == 0

x = modify_locally(x); // displays 1

cout << x.n; // displays 0

}

Sign that Int is nicely copy-
constructible: it has no virtual

member functions (deriving publicly
from Int would be… questionable)

78

Selecting a Responsibility Handling
Mechanism
class Image {

// ...

public:

void modify();

virtual void display() const = 0;

virtual ~Image() = default;

};

class Png : public Image {

// ...

void display() const override;

};

Image* modify_locally(Image *x) {

// illegal! Image is abstract

auto backup = new Image{ *x };

x->modify();

x->display();

return backup;

}

int main() {

Image *p = new Png;

p = modify_locally(p);

p->display();

}

79

Selecting a Responsibility Handling
Mechanism
class Image {

// ...

public:

void modify();

virtual void display() const = 0;

virtual ~Image() = default;

};

class Png : public Image {

// ...

void display() const override;

};

Image* modify_locally(Image *x) {

// illegal! Image is abstract

auto backup = new Image{ *x };

x->modify();

x->display();

return backup;

}

int main() {

Image *p = new Png;

p = modify_locally(p);

p->display();

}

Expression new Image

is illegal since Image is
abstract

80

Abstract (pure virtual)
member function…

Selecting a Responsibility Handling
Mechanism
class Image {

// ...

public:

void modify();

virtual void display() const {}

virtual ~Image() = default;

};

class Png : public Image {

// ...

void display() const override;

};

Image* modify_locally(Image *x) {

// legal, but incorrect

auto backup = new Image{ *x };

x->modify();

x->display();

return backup;

}

int main() {

Image *p = new Png;

p = modify_locally(p);

p->display();

}

81

Selecting a Responsibility Handling
Mechanism
class Image {

// ...

public:

void modify();

virtual void display() const {}

virtual ~Image() = default;

};

class Png : public Image {

// ...

void display() const override;

};

Image* modify_locally(Image *x) {

// legal, but incorrect

auto backup = new Image{ *x };

x->modify();

x->display();

return backup;

}

int main() {

Image *p = new Png;

p = modify_locally(p);

p->display();

}

This is legal as Image is not
abstract, but we have slicing:

we only copy the Image

part of the object, losing all
that is specific to Png

82

Not abstract anymore… but
it’s not helpful (abstract was

better in this case)

Selecting a Responsibility Handling
Mechanism
class Image {

// ...

public:

void modify();

virtual void display() const {}

virtual ~Image() = default;

};

class Png : public Image {

// ...

void display() const override;

};

Image* modify_locally(Image *x) {

// legal, but incorrect

auto backup = new Image{ *x };

x->modify();

x->display();

return backup;

}

int main() {

Image *p = new Png;

p = modify_locally(p);

p->display();

}

The idea here is that only *x

knows what *x is. We need
subjective duplication… Cloning!

83

Selecting a Responsibility Handling
Mechanism
Cloning is subjective duplication. Typically, this involves:

◦ A virtual clone() member function that duplicates the most derived object

◦ A protected copy constructor that performs the duplication
◦ We want protected as client code cannot usually determine if it’s safe to call

There are other ways to achieve this, but this will suffice for our discussion

84

Selecting a Responsibility Handling
Mechanism
class Image {

protected:

Image(const Image&) = default;

public:

virtual Image *clone() const = 0;

virtual ~Image() = default; // etc.

};

class Png : public Image {

Png* clone() const override

{ return new Png{ *this }; }

protected:

Png(const Png&);

};

Image* modify_locally(Image *x) {

auto backup = x->clone(); // Ok

x->modify();

x->display();

return backup;

}

int main() {

Image *p = new Png;

p = modify_locally(p);

p->display();

}

85

Selecting a Responsibility Handling
Mechanism
class Image {

protected:

Image(const Image&) = default;

public:

virtual Image *clone() const = 0;

virtual ~Image() = default; // etc.

};

class Png : public Image {

Png* clone() const override

{ return new Png{ *this }; }

protected:

Png(const Png&);

};

Image* modify_locally(Image *x) {

auto backup = x->clone(); // Ok

x->modify();

x->display();

return backup;

}

int main() {

Image *p = new Png;

p = modify_locally(p);

p->display();

}

This compiles and works…

86

Selecting a Responsibility Handling
Mechanism
class Image {

protected:

Image(const Image&) = default;

public:

virtual Image *clone() const = 0;

virtual ~Image() = default; // etc.

};

class Png : public Image {

Png* clone() const override

{ return new Png{ *this }; }

protected:

Png(const Png&);

};

Image* modify_locally(Image *x) {

auto backup = x->clone(); // Ok

x->modify();

x->display();

return backup;

}

int main() {

Image *p = new Png;

p = modify_locally(p);

p->display();

}

This compiles and works…
and leaks (do you see it?).
Our simple smart pointer

might visibly have its use…

87

Selecting a Responsibility Handling
Mechanism
What’s the problem space?

◦ Some objects can usually be duplicated through copy construction

◦ Some objects can usually be duplicated through cloning

◦ There might be more exotic cases that have escaped us… so we need an escape hatch

88

Selecting a Responsibility Handling
Mechanism
What’s the problem space?

◦ Some objects can usually be duplicated through copy construction

◦ Some objects can usually be duplicated through cloning

◦ There might be more exotic cases that have escaped us… so we need an escape hatch

There is no such thing as a std::clonable interface
◦ We can make suppositions, but we’ll need to keep our options open

89

Selecting a Responsibility Handling
Mechanism
Basic idea: let’s design duplicating function objects

◦ To keep the architecture efficient, let’s suppose them to be stateless

◦ For fun, you can tweak our dup_ptr to accept stateful versions, but then you will need to store them
and will lose the sizeof(dup_ptr<T>)==sizeof(T*) property

90

Selecting a Responsibility Handling
Mechanism
struct Copier {

template <class T> T* operator()(const T *p) const {

return new T{ *p };

}

};

struct Cloner {

template <class T> T* operator()(const T *p) const {

return p->clone();

}

};

91

Selecting a Responsibility Handling
Mechanism
struct Copier {

template <class T> T* operator()(const T *p) const {

return new T{ *p };

}

};

struct Cloner {

template <class T> T* operator()(const T *p) const {

return p->clone();

}

};

92

We will cover the basic cases we know of implicitly,
using these two duplication mechanisms

Selecting a Responsibility Handling
Mechanism
struct Copier {

template <class T> T* operator()(const T *p) const {

return new T{ *p };

}

};

struct Cloner {

template <class T> T* operator()(const T *p) const {

return p->clone();

}

};
The idea is that one can add more duplicating

object types as long as one respects the interface

93

Selecting a Responsibility Handling
Mechanism
struct Copier {

template <class T> T* operator()(const T *p) const {

return new T{ *p };

}

};

struct Cloner {

template <class T> T* operator()(const T *p) const {

return p->clone();

}

};

To keep things simple, we will consider
p!=nullptr to be a precondition of these

duplication mechanisms

94

Selecting a Responsibility Handling
Mechanism
Let’s pick an appropriate-by-default duplicating function object

◦ … but let’s make sure client code can pick one if it « knows better » than we do

95

Selecting a Responsibility Handling
Mechanism
template <class T, class Dup = ...>

class dup_ptr {

T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

};

96

Selecting a Responsibility Handling
Mechanism
template <class T, class Dup = ...>

class dup_ptr {

T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

};

Type Dup would be what is
often called a Policy class

97

Selecting a Responsibility Handling
Mechanism
How do we pick the right type for Dup?

◦ One option is to say « Suppose a clonable interface of our design; if T inherits from clonable,
then we clone, otherwise we copy »

98

Selecting a Responsibility Handling
Mechanism
How do we pick the right type for Dup?

◦ One option is to say « Suppose a clonable interface of our design; if T inherits from clonable,
then we clone, otherwise we copy »

// hypothetical « clonable » interface

struct clonable {

virtual clonable *clone() const = 0;

virtual ~clonable() = default;

protected:

clonable() = default;

clonable(const clonable&) = default;

};

99

Selecting a Responsibility Handling
Mechanism
#include <type_traits>

template <class T, class Dup = std::conditional_t<

std::is_base_of_v<clonable, T>, Cloner, Copier

>>

class dup_ptr {

T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

};

100

Selecting a Responsibility Handling
Mechanism
#include <type_traits>

template <class T, class Dup = std::conditional_t<

std::is_base_of_v<clonable, T>, Cloner, Copier

>>

class dup_ptr {

T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

};

conditional_t<cond,T,F> is equivalent to type
T if cond is true, and equivalent to type F if

cond is false. It’s a compile-time « if » for types

101

Selecting a Responsibility Handling
Mechanism
#include <type_traits>

template <class T, class Dup = std::conditional_t<

std::is_base_of_v<clonable, T>, Cloner, Copier

>>

class dup_ptr {

T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

};

102

// easy to roll out your own:

template <bool, class, class> struct conditional_;

template <class T, class F>

struct conditional_<true, T, F> {

using type = T;

};

template <class T, class F>

struct conditional_<false, T, F> {

using type = F;

};

template <bool cond, class T, class F>

using conditional_t_ = typename conditional_<cond,T,F>::type;

Selecting a Responsibility Handling
Mechanism
#include <type_traits>

template <class T, class Dup = std::conditional_t<

std::is_base_of_v<clonable, T>, Cloner, Copier

>>

class dup_ptr {

T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

};

What we are doing here is picking a default duplication
strategy for T based on the properties of T

If this default strategy is inappropriate, client code can
explicitly use one that suits its needs

103

Selecting a Responsibility Handling
Mechanism
How do we pick the right type for Dup?

◦ One option is to say « Suppose a clonable interface of our design; if T inherits from clonable,
then we clone, otherwise we copy »
◦ This works but is un-idiomatic for C++

◦ Imposing a specific interface to types is intrusive coupling. Some languages encourage this, but not us

104

Selecting a Responsibility Handling
Mechanism
How do we pick the right type for Dup?

◦ One option is to say « Suppose a clonable interface of our design; if T inherits from clonable,
then we clone, otherwise we copy »
◦ This works but is un-idiomatic for C++

◦ Imposing a specific interface to types is intrusive coupling. Some languages encourage this, but not us

◦ Another option is to say « if T has a const member function named clone, then we clone,
otherwise we copy »

105

Selecting a Responsibility Handling
Mechanism
#include <type_traits>

template <class, class = void> struct has_clone : std::false_type { };

template <class T>

struct has_clone <T, std::void_t< decltype(std::declval<const T*>()->clone()) >>

: std::true_type {

};

template <class T> constexpr bool has_clone_v = has_clone<T>::value;

template <class T, class Dup = std::conditional_t<has_clone_v<T>, Cloner, Copier>>

class dup_ptr {

T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

};

106

Selecting a Responsibility Handling
Mechanism
#include <type_traits>

template <class, class = void> struct has_clone : std::false_type { };

template <class T>

struct has_clone <T, std::void_t< decltype(std::declval<const T*>()->clone()) >>

: std::true_type {

};

template <class T> constexpr bool has_clone_v = has_clone<T>::value;

template <class T, class Dup = std::conditional_t<has_clone_v<T>, Cloner, Copier>>

class dup_ptr {

T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

};

void_t was invented by Walter E. Brown. It’s a brilliant
trick that lets us detect the validity of expressions at compile

time and make choices based on the result

https://en.cppreference.com/w/cpp/types/void_t

107

https://en.cppreference.com/w/cpp/types/void_t

Selecting a Responsibility Handling
Mechanism
#include <type_traits>

template <class, class = void> struct has_clone : std::false_type { };

template <class T>

struct has_clone <T, std::void_t< decltype(std::declval<const T*>()->clone()) >>

: std::true_type {

};

template <class T> constexpr bool has_clone_v = has_clone<T>::value;

template <class T, class Dup = std::conditional_t<has_clone_v<T>, Cloner, Copier>>

class dup_ptr {

T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

};

declval<T>() is an hypothetical (no joke!) function that lets one
reason at compile-time as if we had a T, regardless of how that T

would have been constructed

The whole « implementation » is:

template <class T> T&& declval();

108

Selecting a Responsibility Handling
Mechanism
#include <type_traits>

template <class, class = void> struct has_clone : std::false_type { };

template <class T>

struct has_clone <T, std::void_t< decltype(std::declval<const T*>()->clone()) >>

: std::true_type {

};

template <class T> constexpr bool has_clone_v = has_clone<T>::value;

template <class T, class Dup = std::conditional_t<has_clone_v<T>, Cloner, Copier>>

class dup_ptr {

T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

};

Here, concretely, we are validating that it would be possible
to call a clone() member function on a const T*

109

Selecting a Responsibility Handling
Mechanism
#include <type_traits>

template <class, class = void> struct has_clone : std::false_type { };

template <class T>

struct has_clone <T, std::void_t< decltype(std::declval<const T*>()->clone()) >>

: std::true_type {

};

template <class T> constexpr bool has_clone_v = has_clone<T>::value;

template <class T, class Dup = std::conditional_t<has_clone_v<T>, Cloner, Copier>>

class dup_ptr {

T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

};

Thus, instead of imposing a common base class to all
clonable types, we are looking for a member function with a

specific name and signature

110

Selecting a Responsibility Handling
Mechanism
How do we pick the right type for Dup?

◦ One option is to say « Suppose a clonable interface of our design; if T inherits from clonable,
then we clone, otherwise we copy »
◦ This works but is un-idiomatic for C++

◦ Imposing a specific interface to types is intrusive coupling. Some languages encourage this, but not us

◦ Another option is to say « if T has a const member function named clone, then we clone,
otherwise we copy »

◦ If we have a C++20 compiler, we can simply define a clonable concept

111

Selecting a Responsibility Handling
Mechanism
#include <concepts>

template <class T>

concept clonable = requires(const T *p) {

{ p->clone() } -> std::convertible_to<T*>;

};

template <class T, class Dup = std::conditional_t<clonable<T>, Cloner, Copier>>

class dup_ptr {

T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

};

112

Selecting a Responsibility Handling
Mechanism
#include <concepts>

template <class T>

concept clonable = requires(const T *p) {

{ p->clone() } -> std::convertible_to<T*>;

};

template <class T, class Dup = std::conditional_t<clonable<T>, Cloner, Copier>>

class dup_ptr {

T *p{};

public:

// ... use a Dup object whenever we want to duplicate *p

};

Here, we are stating T is clonable

if, given a const T *, we can invoke
clone() on it and get as a result

something convertible to T*

113

Selecting a Responsibility Handling
Mechanism
#include <concepts>

template <class T>

concept clonable = requires(const T *p) {

{ p->clone() } -> std::convertible_to<T*>;

};

template <class T> requires clonable<T> class dup_ptr {

// ... Clone whenever we want to duplicate *p

};

template <class T> requires !clonable<T> class dup_ptr {

// ... Copy whenever we want to duplicate *p

};

114

Selecting a Responsibility Handling
Mechanism
#include <concepts>

template <class T>

concept clonable = requires(const T *p) {

{ p->clone() } -> std::convertible_to<T*>;

};

template <class T> requires clonable<T> class dup_ptr {

// ... Clone whenever we want to duplicate *p

};

template <class T> requires !clonable<T> class dup_ptr {

// ... Copy whenever we want to duplicate *p

};

We could to it this way if we were
convinced there would never be other
options. In our case, keeping a client-

approved escape hatch is probably safer

115

Selecting a Responsibility Handling
Mechanism
How do we pick the right type for Dup?

◦ One option is to say « Suppose a clonable interface of our design; if T inherits from clonable,
then we clone, otherwise we copy »
◦ This works but is un-idiomatic for C++

◦ Imposing a specific interface to types is intrusive coupling. Some languages encourage this, but not us

◦ Another option is to say « if T has a const member function named clone, then we clone,
otherwise we copy »

◦ If we have a C++20 compiler, we can simply define a clonable concept

What if client code has more exotic duplication mechanisms?
◦ Then, client code will supply its own Dup policy instead of relying on our defaults

116

Selecting a Responsibility Handling
Mechanism
template <class T, class Dup = ...>

class dup_ptr {

T *p{};

// ...

};

class Exo { // exotic :)

// private

Exo(const Exo&);

public:

Exo() = default;

Exo* duplicate() const;

};

template <class T, class D>

void f(dup_ptr<T, D> p) { /* use *p */ }

int main() {

struct exo_dup {

Exo* operator()(const Exo *p) const {

return p->duplicate();

}

};

dup_ptr<Exo, exo_dup>

p{ new Exo };

f(p);

}

117

Selecting a Responsibility Handling
Mechanism
template <class T, class Dup = ...>

class dup_ptr {

T *p{};

// ...

};

class Exo { // exotic :)

// private

Exo(const Exo&);

public:

Exo() = default;

Exo* duplicate() const;

};

template <class T, class D>

void f(dup_ptr<T, D> p) { /* use *p */ }

int main() {

struct exo_dup {

Exo* operator()(const Exo *p) const {

return p->duplicate();

}

};

dup_ptr<Exo, exo_dup>

p{ new Exo };

f(p);

}

118

Selecting a Responsibility Handling
Mechanism
template <class T, class Dup = ...>

class dup_ptr {

T *p{};

// ...

};

class Exo { // exotic :)

// private

Exo(const Exo&);

public:

Exo() = default;

Exo* duplicate() const;

};

template <class T, class D>

void f(dup_ptr<T, D> p) { /* use *p */ }

auto duplicator() {

return [](auto p) {

return p->duplicate();

};

}

int main() {

dup_ptr<Exo, decltype(duplicator())>

p{ new Exo };

f(p);

}

119

Putting it all Together

120

Putting it all Together
A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
◦ Default constructor

◦ Copy constructor

◦ Move constructor

◦ Copy assignment

◦ Move assignment

◦ Destructor

121

Putting it all Together
A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
◦ Default constructor

◦ Copy constructor

◦ Move constructor

◦ Copy assignment

◦ Move assignment

◦ Destructor

122

Putting it all Together
A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
◦ Default constructor

◦ Copy constructor

◦ Move constructor

◦ Copy assignment

◦ Move assignment

◦ Destructor

We will look at the others too, but
duplication of the pointee will occur in

copying functions

123

Putting it all Together
A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
◦ Default constructor

◦ Copy constructor

◦ Move constructor

◦ Copy assignment

◦ Move assignment

◦ Destructor

Some of these functions will use the copy-and-swap
idiom for assignment. We will only define the swap()

member function between two dup_ptr<T,D>

with the same D type:

void swap(dup_ptr &other) {

using std::swap;

swap(p, other.p);

}

124

Putting it all Together
A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
◦ Default constructor

◦ Copy constructor

◦ Move constructor

◦ Copy assignment

◦ Move assignment

◦ Destructor

These two have been
covered previously

125

Putting it all Together
A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
◦ Default constructor

◦ Copy constructor

◦ Move constructor

◦ Copy assignment

◦ Move assignment

◦ Destructor

template <class T, class Dup = ...>

class dup_ptr {

T *p{};

public:

dup_ptr() = default;

~dup_ptr() {

delete p;

}

// ...

};

126

Putting it all Together
A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
◦ Default constructor

◦ Copy constructor

◦ Move constructor

◦ Copy assignment

◦ Move assignment

◦ Destructor

Move operations can be implemented simply
between two dup_ptr<T,D> instances if we

assume D to be stateless (our situation)

If we decide that the D object needs to be stored,
then we need to reflect on whether it should be
movable, and what it should mean in that case

127

Putting it all Together
A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
◦ Default constructor

◦ Copy constructor

◦ Move constructor

◦ Copy assignment

◦ Move assignment

◦ Destructor

// ...

dup_ptr(dup_ptr &&other)

: p{ std::exchange(other.p, nullptr) } {

}

dup_ptr& operator=(dup_ptr &&other) {

dup_ptr{ std::move(other) }.swap(*this);

return *this;

}

// ...

128

Putting it all Together
A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
◦ Default constructor

◦ Copy constructor

◦ Move constructor

◦ Copy assignment

◦ Move assignment

◦ Destructor

The copy operations will duplicate the pointee
according to the duplication policy associated with

the type (the D in dup_ptr<T,D>).

We will not try do duplicate a null pointer, thus
respecting the duplication policies’ precondition

129

Putting it all Together
A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
◦ Default constructor

◦ Copy constructor

◦ Move constructor

◦ Copy assignment

◦ Move assignment

◦ Destructor

// ...

dup_ptr(const dup_ptr &other)

: p{ other.empty()? nullptr : Dup{}(other.p) } {

}

dup_ptr& operator=(const dup_ptr &other) {

dup_ptr{ other }.swap(*this);

return *this;

}

// ...

130

Putting it all Together
A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
◦ Default constructor

◦ Copy constructor

◦ Move constructor

◦ Copy assignment

◦ Move assignment

◦ Destructor

Full source code is available on https://wandbox.org/permlink/zuXLKc8tUKpdKaYu

131

https://wandbox.org/permlink/zuXLKc8tUKpdKaYu

Putting it all Together
A smart pointer defines responsibily over the pointee,

Thus, the selected duplication mechanism will intervene in special member functions
◦ Default constructor

◦ Copy constructor

◦ Move constructor

◦ Copy assignment

◦ Move assignment

◦ Destructor

Full source code is available on https://wandbox.org/permlink/zuXLKc8tUKpdKaYu

There’s a lot more we could do with time:
specialize for the T[] case, add

relational operators, implement covariant
constructors and assignment, etc.

132

https://wandbox.org/permlink/zuXLKc8tUKpdKaYu

Reflecting on what we did

133

Reflecting on what we did
In C++, we don’t need to use pointers all that much, but when we do…

Raw pointers are fine and useful sometimes

However, their responsibility (if any) towards the pointee is often unclear
◦ Ideally, either encapsulate them in « handle types » such as std::vector<T> or std::string,

or use them as non-owning observers of their pointee

The key benefit of smart pointers is that they encode the responsibility with respect to the
pointee into a type

◦ Their purpose is clearer

134

Reflecting on what we did
Standard C++ smart pointers are small in number but very good at what they do

◦ std::unique_ptr is a beautiful idea
◦ Simplifies code and solves many problems at little-to-no cost depending on the use-case

◦ std::shared_ptr has a more narrow niche, but occupies it well
◦ It’s tricky to write, so prefer using standard, well-tested ones to rolling out your own

135

Reflecting on what we did
There are niches not (yet) covered by standard smart pointers

◦ We covered one with dup_ptr

◦ We wrote code to have fun, obviously, but we had a use-case in mind

Just because a niche is left uncovered does not mean we should standardize a solution for it
◦ Sometimes, the niche is too narrow

◦ At other times, the solutions we know are not of std::-level quality
◦ I would not dare suggesting a strategy that introduces a mandatory dependency on a std::clonable interface!

136

Reflecting on what we did
Our dup_ptr<T,D> had interesting properties:

◦ We implicitly supplied a D type for the most common cases

◦ We allowed client code to supply its own D type for atypical cases

◦ Provided D remains stateless and we do not need to store it, we can provide a dup_ptr<T> which
incurs no size overhead when compared with T*

137

Reflecting on what we did
Deducing a D policy class for dup_ptr<T,D> can be done in various ways

◦ Imposing an intrusive type relationship
◦ if T derives from clonable…

◦ Detecting the validity of relied-upon expressions
◦ if I can call clone() from an hypothetical const T*…

◦ Detecting conformity to a concept
◦ if T satisfies clonable…

◦ etc.

138

Reflecting on what we did
I had fun, hope you had fun too!

139

Questions?

140

